【題目】已知關(guān)于x的一元二次方程.
(1)若a、b是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒有實根的概率
【答案】(1)(2)
【解析】
試題分析:(1)本題是一個古典概型,用(a,b)表示一枚骰子投擲兩次所得到的點數(shù)的事件,基本事件(a,b)的總數(shù)有36個滿足條件的事件是二次方程有兩正根,根據(jù)實根分布得到關(guān)系式,得到概率;(2)本題是一個幾何概型,試驗的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|2≤a≤6,0≤b≤4},滿足條件的事件為:B={(a,b)|2≤a≤6,0≤b≤4,},做出兩者的面積,得到概率
試題解析:設(shè)“方程有兩個正根”的事件為A,
(1)由題意知本題是一個古典概型用(a,b)表示一枚骰子投擲兩次所得到的點數(shù)的事件
依題意知,基本事件(a,b)的總數(shù)有36個,
二次方程x2﹣2(a﹣2)x﹣b2+16=0有兩正根,等價于
,即,
則事件A包含的基本事件為(6,1)、(6,2)、(6,3)、(5,3)共4個
∴所求的概率為P(A)=;
(2)由題意知本題是一個幾何概型,
試驗的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|2≤a≤4,0≤b≤6},
其面積為S(Ω)=12
滿足條件的事件為:B={(a,b)|2≤a≤4,0≤b≤6,(a﹣2)2+b2<16},如圖中陰影部分所示,
其面積為S(B)=+=
∴所求的概率P(B)=.
科目:高中數(shù)學 來源: 題型:
【題目】在半徑為R的圓內(nèi),作內(nèi)接等腰△ABC,當?shù)走吷细遠∈(0,t]時,△ABC的面積取得最大值 ,則t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高一年級期中考試的學生中隨機抽出60名學生,將其物理成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試中的平均分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1) 時,證明: ;
(2)當 時,直線 和曲線 切于點 ,求實數(shù) 的值;
(3)當 時,不等式 恒成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】商場銷售某一品牌的羊毛衫,購買人數(shù)是羊毛衫標價的一次函數(shù),標價越高,購買人數(shù)越少.把購買人數(shù)為零時的最低標價稱為無效價格,已知無效價格為每件300元.現(xiàn)在這種羊毛衫的成本價是100元/ 件,商場以高于成本價的價格(標價)出售. 問:
(1)商場要獲取最大利潤,羊毛衫的標價應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤只是一種“理想結(jié)果”,如果商場要獲得最大利潤的75%,那么羊毛衫的標價為每件多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,過對角線的一個平面交于點,交于.
①四邊形一定是平行四邊形;
②四邊形有可能是正方形;
③四邊形在底面內(nèi)的投影一定是正方形;
④四邊形有可能垂直于平面.
以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求實數(shù)a的取值范圍;
(Ⅱ)當a=1時,直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的最大值及此時圍成的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com