【題目】如圖,為圓的直徑,點(diǎn),在圓上,,矩形所在平面和圓所在平面互相垂直,已知,,
(1)求證:平面平面
(2)若幾何體和幾何體的體積分別為和,求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為橢圓:的右焦點(diǎn),過的直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為.
(1)求橢圓的方程;
(2)若直線、斜率的乘積為,兩直線,分別與橢圓交于、、、四點(diǎn),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的某種產(chǎn)品成箱包裝,每箱20件,每一箱產(chǎn)品在交付用戶時(shí),用戶要對(duì)該箱中部分產(chǎn)品作檢驗(yàn).設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否合格相互獨(dú)立.
(1)記某一箱20件產(chǎn)品中恰有2件不合格品的概率為,取最大值時(shí)對(duì)應(yīng)的產(chǎn)品為不合格品概率為,求;
(2)現(xiàn)從某一箱產(chǎn)品中抽取3件產(chǎn)品進(jìn)行檢驗(yàn),以(1)中確定的作為p的值,已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為10元,若檢驗(yàn)出不合格品,則工廠要對(duì)每件不合格品支付30元的賠償費(fèi)用,檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個(gè)焦點(diǎn)為,是橢圓上一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上下頂點(diǎn)分別為,,是橢圓上異于的任意一點(diǎn),軸,為垂足,為線段的中點(diǎn),直線交直線于點(diǎn),為線段的中點(diǎn).
①求證:;
②若的面積為,求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面CDEF⊥平面ABCD,且四邊形ABCD為平行四邊形,∠DAB=45°,四邊形CDEF為直角梯形,EF∥DC,ED⊥CD,AB=3EF=3,ED=a,AD.
(1)求證:AD⊥BF;
(2)若線段CF上存在一點(diǎn)M,滿足AE∥平面BDM,求的值;
(3)若a=1,求二面角D﹣BC﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l過定點(diǎn)P(0,1),且與直線l1:x-3y+10=0,l2:2x+y-8=0分別交于A、B兩點(diǎn).若線段AB的中點(diǎn)為P,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,①已知點(diǎn),直線,動(dòng)點(diǎn)P滿足到點(diǎn)Q的距離與到直線的距離之比為.②已知點(diǎn)是圓上一個(gè)動(dòng)點(diǎn),線段HG的垂直平分線交GE于P.③點(diǎn)分別在軸,y軸上運(yùn)動(dòng),且,動(dòng)點(diǎn)P滿足.
(1)在①,②,③這三個(gè)條件中任選一個(gè),求動(dòng)點(diǎn)P的軌跡C的方程;
(注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)
(2)設(shè)圓上任意一點(diǎn)A處的切線交軌跡C于M,N兩點(diǎn),試判斷以MN為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo).若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).
(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);
(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com