【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)記上最大值為,若,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:

求導(dǎo)可得:,分類討論:

①當(dāng)時(shí),函數(shù)上單調(diào)遞增;

②當(dāng)時(shí),函數(shù)的遞增區(qū)間有,,遞減區(qū)間有.

Ⅱ)由(Ⅰ)知:

①當(dāng)時(shí),;

②當(dāng)時(shí),;

③當(dāng)時(shí),分類討論有:

當(dāng)時(shí),,

當(dāng)時(shí),,.

據(jù)此可得若,則實(shí)數(shù)的取值范圍為.

試題解析:

,

①當(dāng)時(shí),恒成立,此時(shí)函數(shù)上單調(diào)遞增;

②當(dāng)時(shí),令,得,

時(shí),;

時(shí),,

∴函數(shù)的遞增區(qū)間有,,遞減區(qū)間有.

Ⅱ)由(Ⅰ)知:

①當(dāng)時(shí),函數(shù)上單調(diào)遞增,此時(shí);

②當(dāng)時(shí),單調(diào)遞減,

,,,即;

③當(dāng)時(shí),,

,遞增,在上遞減,

.

,得,令,則,

,即 .

∴當(dāng)時(shí),,;

當(dāng)時(shí),,.

綜合①②③得:若,則實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=logax1)(a0,且a≠1).

1)若fx)在[29]上的最大值與最小值之差為3,求a的值;

2)若a1,求不等式f2x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮廣元某景點(diǎn)設(shè)有共享電動(dòng)車租車點(diǎn),共享電動(dòng)車的收費(fèi)標(biāo)準(zhǔn)是每小時(shí)2不足1小時(shí)的部分按1小時(shí)計(jì)算甲、乙兩人各租一輛電動(dòng)車,若甲、乙不超過一小時(shí)還車的概率分別為;一小時(shí)以上且不超過兩小時(shí)還車的概率分別為;兩人租車時(shí)間都不會(huì)超過三小時(shí).

求甲、乙兩人所付租車費(fèi)用相同的概率;

設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品13千克.

(1)求的值;

(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若在定義域內(nèi)有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求的極值;

(2)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;

(3)當(dāng)時(shí),若的解集為 ,且 中有且僅有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span> ,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示.

下列關(guān)于的命題:

①函數(shù)的極大值點(diǎn)為;

②函數(shù)上是減函數(shù);

③如果當(dāng)時(shí),的最大值是,那么的最大值為;

④當(dāng)時(shí),函數(shù)個(gè)零點(diǎn);

⑤函數(shù)的零點(diǎn)個(gè)數(shù)可能為、、、、個(gè).

其中正確命題的個(gè)數(shù)是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校響應(yīng)教育部門疫情期間“停課不停學(xué)”的號(hào)召,實(shí)施網(wǎng)絡(luò)授課,為檢驗(yàn)學(xué)生上網(wǎng)課的效果,高三學(xué)年進(jìn)行了一次網(wǎng)絡(luò)模擬考試.全學(xué)年共1500人,現(xiàn)從中抽取了100人的數(shù)學(xué)成績(jī),繪制成頻率分布直方圖(如圖所示).已知這100人中分?jǐn)?shù)段的人數(shù)比分?jǐn)?shù)段的人數(shù)多6人.

1)根據(jù)頻率分布直方圖,求ab的值,并估計(jì)抽取的100名同學(xué)數(shù)學(xué)成績(jī)的中位數(shù);(中位數(shù)保留兩位小數(shù))

2)現(xiàn)用分層抽樣的方法從分?jǐn)?shù)在的兩組同學(xué)中隨機(jī)抽取6名同學(xué),從這6名同學(xué)中再任選2名同學(xué)作為“網(wǎng)絡(luò)課堂學(xué)習(xí)優(yōu)秀代表”發(fā)言,求這2名同學(xué)的分?jǐn)?shù)不在同一組內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與圓相交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案