已知函數(shù)f(x)=loga(a>0,b>0,a≠1).
(1)求f(x)的定義域;(2)討論f(x)的奇偶性;
(3)討論f(x)的單調(diào)性.
【答案】分析:(1)真數(shù)要大于0;(2)用奇偶性定義討論;(3)先轉(zhuǎn)化函數(shù)再用單調(diào)性定義討論.
解答:解:(1)使f(x)有意義,則>0,
∵b>0,∴x>b或x<-b,
∴f(x)的定義域為{x|x>b或x<-b}.
(2)由(1)知f(x)的定義域關(guān)于原點對稱,
∵f(-x)=loga=loga=loga-1=-loga=-f(x).
∴f(x)為奇函數(shù).
(3)設(shè)u===1+
設(shè)x1>x2,則u1-u2=1+-=,
當(dāng)x1>x2>b時,<0,即u1<u2,
此時,u為減函數(shù),同理-b>x1>x2時,u也為減函數(shù).
∴當(dāng)a>1時,f(x)=loga在(-∞,-b)上為減函數(shù),在(b,+∞)上也為減函數(shù).
當(dāng)0<a<1時,
f(x)=loga在(-∞,-b)上為增函數(shù),在(b,+∞)上也為增函數(shù).
點評:本題主要考查函數(shù)的基本性質(zhì)單調(diào)性和奇偶性,是函數(shù)中的?碱}型,屬中高檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案