已知函數(shù)f(x)=ln(1+xx)-ax,其中a>0
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果a∈(0,1),當a≥0時,不等式f(x)-m<0的解集為空集,求實數(shù)m的取值范圍;
(3)當x>1時,若g(x)=f[ln(x-1)]+aln(x-1),試證明:對n∈N*,當n≥2時,有
【答案】分析:(1)求出函數(shù)的導數(shù),其中含有字母參數(shù)a,根據(jù)導數(shù)的零點討論a的取值范圍,可以得出f(x)的單調(diào)區(qū)間的兩種情形;
(2)變量分離,將不等式f(x)-m<0化為f(x)<m,解集為空集,說明f(x)的最小值大于或等于m,再在(1)的單調(diào)性的基礎上,討論得出函數(shù)f(x)的最小值,即可求m的取值范圍;
(3)當x>1時,化g(x)為lnxg,問題轉(zhuǎn)化為證:ln<-1-2-3…-(n-1)=n-1-2…-(n-1)-n,再構(gòu)造一個新的函數(shù):h(t)=lnt-1+,t∈(0,1),利用導數(shù)得出h(t)為減函數(shù),最后利用函數(shù)的極限,讓t分別取、、、…、(n≥2),同向不等式迭加,最終得出要證的不等式成立.
解答:解:(1)∵f'(x)=
當a≥1時,f'(x)<0,∴f(x)的遞減區(qū)間為R
當0<a<1時,f'(x)>0得:x>lnf'(x)<0得:x<ln
∴f(x)的遞增區(qū)間為(ln,+∞),遞減區(qū)間為(-∞,ln
(2)∵不等式f(x)<m的解集為空集,即f(x)≥m在x∈[0,+∞)恒成立
又∵0<a<時,ln<0,∴f(x)min=f(0)=ln2,∴m≤ln2
≤a<1時,由①可知:x=ln時,f(x)有極小值∴f(x)min=f(ln
∴m≤(a-1)ln(1-a)-alna
(3)當x>1時,g(x)=f[ln(x-1)+aln(x-1)]=ln[1+eln(x-1)]-aln(x-1)+aln(x-1)=lnxg(
∴即證:ln<-1-2-3…-(n-1)=n-1-2…-(n-1)-n
令h(t)=lnt-1+,t∈(0,1),
∴h'(t)=<0
∴h(t)為減函數(shù)
h(t)=0,∴h(t)>0,即:lnt>1-
當t分別取、、、…、(n≥2)時有
:ln>n-1-2-3-…-(n-1)-n
∴l(xiāng)n
點評:本題考查了函數(shù)導數(shù)的應用,屬于中檔題.同時還考查了導數(shù)、函數(shù)與不等式的綜合應用,極限思想解題,考查了計算能力和轉(zhuǎn)化、化歸思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案