對于“a,b,c”是不全相等的正數(shù),給出下列判斷:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a=b與b=c及a=c中至少有一個成立;
③a≠c,b≠c,a≠b不能同時成立,
其中判斷正確的個數(shù)是( 。
A、0個B、1個C、2個D、3個
考點:命題的真假判斷與應用
專題:計算題,簡易邏輯
分析:“a,b,c”是不全相等的正數(shù)是對“a,b,c”是全相等的正數(shù)的否定,從而對三個命題依次判斷即可.
解答: 解:∵“a,b,c”是不全相等的正數(shù),
∴①(a-b)2,(b-c)2,(c-a)2三個數(shù)中至少有兩個是正值,
故(a-b)2+(b-c)2+(c-a)2>0,
故正確;
②當a,b,c全不相等,如a=1,b=2,c=3時,故錯誤;
③由a=1,b=2,c=3知,a≠c,b≠c,a≠b可以同時成立,故錯誤;
故僅有①正確;
故選B.
點評:本題考查了數(shù)學中的否定,注意數(shù)學中的否定與俗語中的不同,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

全國高中數(shù)學聯(lián)合競賽于每年10月中旬的第一個星期日舉行,競賽分一試和加試,其中加試題有4題,小明參加了今年的競賽,他能夠答對加試的第一,二,三,四題的概率分別為0.5,0.5,0.2,0.2,且答對各題互不影響.則
(1)小明在加試中至少答對3題的概率 
(2)記X為小明在加試題中答對的題的個數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),并且滿足下列條件:
①f(2)=1; ②f(x,y)=f(x)+f(y); ③當x>1時,f(x)>0.
(Ⅰ)求f(1),f(
1
4
)的值;
(Ⅱ) 證明f(x)在(0,+∞)是增函數(shù);
(Ⅲ)解不等式f(2)+f(4-8x)>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
e2
是不共線的單位向量,向量
AB
=2
e1
+k
e2
,向量
CB
=
e1
+3
e2
,向量
CD
=2
e1
-
e2
,且A,B,D三點共線,若向量
e1
e2
的夾角為60°,求|
AB
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,短軸一個端點到右焦點的距離為
3

(1)求橢圓C的方程;
(2)設(shè)直線y=x+1與橢圓C交于A,B兩點,求A,B兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1過點M(1,1),且與橢圓
x2
25
+
y2
16
=1相交于A、B兩點,若線段AB的中點在直線l2:x+5y=0上,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是橢圓
x2
4
+
y2
2
=1上的一點,求P到M(m,0)(m>0)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形
(Ⅰ)求證:AC⊥平面PBD;
(Ⅱ)若∠BAD=60°,AD=2,PD=2
2
,AC與BD相交于O,求PA與平面PBD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2+2x-1的值域是( 。
A、[-1,+∞)
B、[-2,+∞)
C、[1,+∞)
D、[2,+∞)

查看答案和解析>>

同步練習冊答案