(1)已知集合A={y|y=log2x,x≥1},B={y|y=(
12
x,x≥0},求A∩B,A∪B;
(2)已知A={x|a≤x≤a+3},B={x|x2+5x-6>0}.若A∩B=∅,求實(shí)數(shù)a的取值范圍.
分析:(1)求出集合A與B中函數(shù)的值域,確定出A與B,求出A與B的交集及并集即可;
(2)求出集合B中不等式的解集,根據(jù)A,以及A與B的交集為空集列出關(guān)于a的不等式,求出不等式的解集即可確定出a的范圍.
解答:解:(1)由集合A中的y=log2x,x≥1,得到y(tǒng)≥0,即A=[0,+∞);
由集合B中的y=(
1
2
x,x≥0,得到0<y≤1,即B=(0,1],
則A∩B=(0,1],A∪B=[0,+∞);
(2)由集合B中的不等式解得:x>1或x<-6,
∵A={x|a≤x≤a+3},A∩B=∅,
a≥-6
a+3≤1
,
解得:-6≤a≤-2.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,以及并集及其運(yùn)算,熟練掌握交、并集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、與集合交匯.例1:已知集合A={x|x2-y2=1},B={y|x2=4y},則(CRA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列四個(gè)命題:
①函數(shù)f(x)=
a2-x2
|x+b|-b
(b>a>0)
為奇函數(shù);
②函數(shù)y=
1-x
的值域?yàn)閧y|0≤y≤1};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,則a的取值集合為{-1,
1
3
};
④集合A={非負(fù)實(shí)數(shù)},B={實(shí)數(shù)},對(duì)應(yīng)法則f:“求平方根”,則f是A到B的映射.
其中正確命題的序號(hào)為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知集合A={x|x2=1},B={x|ax=1},若A∪B=A,求實(shí)數(shù)a的值.
(2)已知全集U={1,2,3,4,5,6,7,8,9},A⊆U,B⊆U,且(?UA)∩B={1,9},A∩B={2},(?UA)∩(?UB)={4,6,8},求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知集合A={x|x2-5x+6=0},B={x|mx+1=0},且A∪B=A,求實(shí)數(shù)m的值組成的集合.
(2)設(shè)p:實(shí)數(shù)x滿(mǎn)足x2-4ax+3a2<0,其中a≠0,q:實(shí)數(shù)x滿(mǎn)足
x2-x-6≤0
x2+2x-8>0
,若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知集合A={x|3≤x<7},B={x|2<x<10},全集為實(shí)數(shù)集R.求 (?RA)∩B;
(2)計(jì)算:2(lg
2
)2+lg
2
•lg5+
(lg
2
)
2
-lg2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案