《論語•學路》篇中說:“名不正,則言不順;言不順,則事不成;事不成,則禮樂不興;禮樂不興,則刑罰不中;刑罰不中,則民無所措手足;所以,名不正,則民無所措手足.”上述推理用的是
 
.(在類比推理、歸納推理、演繹推理中選填一項)
考點:演繹推理的基本方法
專題:證明題,推理和證明
分析:演繹推理,就是從一般性的前提出發(fā),通過推導即“演繹”,得出具體陳述或個別結論的過程,演繹推理是從一般到特殊的推理,題目中所給的這種推理符合演繹推理的形式.
解答: 解:演繹推理,就是從一般性的前提出發(fā),通過推導即“演繹”,得出具體陳述或個別結論的過程,演繹推理可以幫助我們發(fā)現(xiàn)結論,題目中所給的這種推理符合演繹推理的形式,
故答案為:演繹推理.
點評:本題考查演繹推理的意義,是一個基礎題,這種題目可以單獨出現(xiàn),但是單獨出現(xiàn)的幾率不大,通過這個題目同學們要掌握幾種推理的特點,學會選擇.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

△ABC中,∠C=2∠A,且A<B<C,b=10,a+c=2b,求a,c及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,公比q>1,a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an+1log2an+1,數(shù)列{bn}的前n項和為Sn,求使得2n+1+Sn>60n+2成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且a1=4,S4=30.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an•2n+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設實數(shù)a為區(qū)間[0,4]內(nèi)的隨機數(shù),則函數(shù)f(x)=log3(x+
1
x
-a)(x>0)的值域為R的概率等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-a-x(a>0且a≠1).
(1)若f(1)<0,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4-x)<0恒成立時實數(shù)t的取值范圍;
(2)若f(1)=
3
2
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)某電子商務平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000為上網(wǎng)購物者的年齡情況如圖所示:
(1)已知[30,40)、[40,50)、[50,60)三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求a,b的值;
(2)該電子商務平臺將年齡段在[30,50)之間的人定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取10人,并在這個10人中隨機抽取3人進行回訪,求此三人獲得代金券總和X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=2an-2(n∈N+
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足an•bn=2(an-1),記{bn}的前n項和為Tn,求使Tn>2015的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)數(shù)列0,1,3,4,5,6,8,9,10…的項構造出一個新的數(shù)列,并寫出它的一個通項公式.

查看答案和解析>>

同步練習冊答案