【題目】已知數(shù)列是公差不為0的等差數(shù)列, 是等比數(shù)列,且

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前n項的和

【答案】(1);(2)

【解析】試題分析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,由,可得,解出即可得出數(shù)列的通項公式;(2),設(shè)數(shù)列的前項和為,則, ,當時, ,當時, ,進而可得結(jié)果.

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d0,等比數(shù)列{bn}的公比為q,∵b1=a1=3,b2=a3,b3=a9.∴,解得d=3,q=3.∴an=3+3(n﹣1)=3n,bn=3n

(2)=5n﹣32,

設(shè)數(shù)列{cn}的前n項和為Tn,則Tn==,令cn0,解得n≥7,∴|cn|=,∴當n6時,Sn=﹣(a1+a2+…+an)=﹣Tn=,當n7時,Sn=﹣T6+a7+a8+…+an=Tn﹣2T6=+174,∴數(shù)列{|cn|}的前n項的和Sn=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.

)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

)已知每檢測一件產(chǎn)品需要費用100元,設(shè)表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)當,且時,判斷函數(shù)是否存在極值,若存在,求出極值點;若不存在,說明理由;

(2)若,對任意的正整數(shù),當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O的方程為x2+y2=4,P是圓O上的一個動點,若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實數(shù)a的取值范圍是(
A.0≤a≤2
B.
C.0≤a≤1
D.a≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班學生進行了三次數(shù)學測試,第一次有8名學生得滿分,第二次有10名學生得滿分,第三次有12名學生得滿分,已知前兩次均為滿分的學生有5名,三次測試中至少有一次得滿分的學生有15名,若后兩次均為滿分的學生至少有名,則的值為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,奇函數(shù)的個數(shù)為( ) ①y=x2sinx ②y=sinx , x ③y=xcosx , x ④y=tanx
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,最小正周期是π且在區(qū)間 上是增函數(shù)的是(
A.y=sin2x
B.y=sinx
C.y=tan
D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2﹣ax(a∈R)
(1)a=3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤2x2恒成立,求實數(shù)a的取值范圍;
(3)求證;lnn> + +1 +…+ (n∈N+)且n≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(
A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

同步練習冊答案