設(shè)F1、F2分別為雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1(a>0,b>0)的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn)P,滿足|PF2|=|F1F2|,且點(diǎn)P的橫坐標(biāo)為數(shù)學(xué)公式c(c為半焦距),則該雙曲線的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    2
  4. D.
    2數(shù)學(xué)公式
C
分析:根據(jù)雙曲線的第二定義,結(jié)合|PF2|=|F1F2|,且點(diǎn)P的橫坐標(biāo)為c,可得幾何量之間的關(guān)系,從而可求雙曲線的離心率
解答:由題意,
∵|PF2|=|F1F2|,


∴5e2-8e-4=0
∴(e-2)(5e+2)=0
∵e>1
∴e=2
故選C.
點(diǎn)評:本題以雙曲線為載體,考查雙曲線的幾何性質(zhì),解題的關(guān)鍵是得出幾何量之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),以線段F1F2為直徑的圓交雙曲線左支于A,B兩點(diǎn),且∠AF1B=120°,若雙曲線的離心率介于整數(shù)k與k+1之間,則k=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石家莊一模)設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
= 1
的左、右焦點(diǎn),點(diǎn)P在雙曲線的右支上,且|PF2|=|1FF2|,F(xiàn)2到直線PF1的距離等于雙曲線的實(shí)軸長,則該雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)設(shè)F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn)P,滿足|PF2|=|F1F2|,且點(diǎn)P的橫坐標(biāo)為
5
4
c(c為半焦距),則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年重慶市七區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

設(shè)F1、F2分別為雙曲線-=1(a>0,b>0)的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn)P,滿足|PF2|=|F1F2|,且點(diǎn)P的橫坐標(biāo)為c(c為半焦距),則該雙曲線的離心率為( )
A.
B.
C.2
D.2

查看答案和解析>>

同步練習(xí)冊答案