如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,且三角形PAD為等腰△,PA=PD.
(Ⅰ)求證AD⊥PB;
(Ⅱ)線段AP上是否存在點M,使得MD∥平面PBC?
并說明理由.

【答案】分析:(1)由題意取AD的中點G,連接PG、GB、BD,因△PAD是等腰直角三角形,所以PG⊥AD,再由AB=AD,且∠DAB=60°得BG⊥AD,證出AD⊥平面PGB,即AD⊥PB;
(2)考慮M為AP的中點,由題意取PB的中點F,連接MF、CF,由中位線和題意證出CDMF是平行四邊形,得到DM∥CF,由線面平行的判定定理得DM∥平面PCB.
解答:解:(1)取AD的中點G,連接PG、GB、BD
∵PA=PD,
∴PG⊥AD.(2分)
∵AB=AD,且∠DAB=60°,
∴△ABD是正三角形,BG⊥AD,又PG∩BG=G
∴AD⊥平面PGB.
∴AD⊥PB.(6分)
(2)當M為PA的中點時,取PB的中點F,連接MF、CF,
∵M、F分別為PA、PB的中點,
∴MF∥AB,且
∵四邊形ABCD是直角梯形,AB∥CD且AB=2CD,
∴MF∥CD且MF=CD.(10分)
∴四邊形CDMF是平行四邊形.
∴DM∥CF.
∵CF?平面PCB,DM?平面PCB
∴DM∥平面PCB.(12分)

點評:本題主要考查了線面垂直和平行的判定定理的應用,主要用了中位線和等腰三角形的中線證明線線平行和垂直.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案