【題目】已知函數(shù)時都取得極值.

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對,不等式恒成立,求的取值范圍.

【答案】解:(1……………………2

……………………3

……………………5

2,

時,為極大值,……………………6

,則為最大值,……………………8

要使

恒成立,則只需要,……………………10

……………………12

【解析】

1)求出fx),由題意得f)=0f1)=0聯(lián)立解得b的值,然后把、b的值代入求得fx)及fx),討論導(dǎo)函數(shù)的正負得到函數(shù)的增減區(qū)間;

2)根據(jù)(1)函數(shù)的單調(diào)性,由于x[12]恒成立求出函數(shù)的最大值為f2),代入求出最大值,然后令f2)<c2列出不等式,求出c的范圍即可.

1,fx)=3x2+2ax+b

解得,

fx)=3x2x2=(3x+2)(x1),函數(shù)fx)的單調(diào)區(qū)間如下表:

x

(﹣∞,

,1

1

1,+∞

fx

+

0

0

+

fx

極大值

極小值

所以函數(shù)fx)的遞增區(qū)間是(﹣,)和(1,+∞),遞減區(qū)間是(1).

2)因為,根據(jù)(1)函數(shù)fx)的單調(diào)性,

fx)在(﹣1,)上遞增,在(,1)上遞減,在(12)上遞增,

所以當x時,fx為極大值,而f2)=,所以f2)=2+c為最大值.

要使fx)<x[1,2]恒成立,須且只需f2)=2+c

解得c<﹣1c2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓其左,右焦點分別為,離心率為又點在線段的中垂線上。

(1)求橢圓的方程;

(2)設(shè)橢圓的左右頂點分別為,點在直線上(點不在軸上),直線與橢圓交于點直線與橢圓交于線段的中點為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)zbi(bR),是純虛數(shù),i是虛數(shù)單位.

(1)求復(fù)數(shù)z;

(2)若復(fù)數(shù)(mz)2所表示的點在第二象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2a3=a2+4

)求{an}的通項公式;

)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

的單調(diào)遞減區(qū)間;

②當時,直線y=k與y=f (x)的圖象有兩個不同交點;

③函數(shù)y=f(x)的圖象與的圖象沒有公共點;

④當時,函數(shù)的最小值為2.

其中正確結(jié)論的序號是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若曲線在點處切線的斜率為,求函數(shù)的單調(diào)區(qū)間;

若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P-A BC的四個頂點都在球D的表面上,PA平面ABC,ABBC,PA =3,AB=BC=2,則球O的表面積為

A13π B17π C52π D68π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校舉行“兩城同創(chuàng)”的知識競賽答題,高一年級共有1200名學(xué)生參加了這次競賽.為了解競賽成績情況,從中抽取了100名學(xué)生的成績進行統(tǒng)計.其中成績分組區(qū)間為,,,,其頻率分布直方圖如圖所示,請你解答下列問題:

(1)求的值;

(2)若成績不低于90分的學(xué)生就能獲獎,問所有參賽學(xué)生中獲獎的學(xué)生約為多少人;

(3)根據(jù)頻率分布直方圖,估計這次平均分(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段圖象過點(0,1),如圖所示.

(1)求函數(shù)f1(x)的表達式;

(2)將函數(shù)yf1(x)的圖象向右平移個單位,得函數(shù)yf2(x)的圖象,求yf2(x)的最大值,并求出此時自變量x的集合.

查看答案和解析>>

同步練習冊答案