【題目】定義:若數(shù)列滿足所有的項均由構(gòu)成且其中有個,有個,則稱為“﹣數(shù)列”.
(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?
(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.
【答案】(1)16;(2)115.
【解析】
(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.
(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計算公式可得,當(dāng)時根據(jù)題意有,共個;
當(dāng)時求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對即可.
解:(1)三個數(shù)乘積為有兩種情況:“”,“”,
其中“”共有:種,
“”共有:種,
利用分類計數(shù)原理得:
為“﹣數(shù)列”中的任意三項,
則使得的取法有:種.
(2)與(1)同理,“”共有種,
“”共有種,
而在“﹣數(shù)列”中任取三項共有種,
根據(jù)古典概型有:,
再根據(jù)組合數(shù)的計算公式能得到:
,
時,應(yīng)滿足,
,共個,
時,
應(yīng)滿足,
視為常數(shù),可解得,
,
根據(jù)可知,,
,
,
根據(jù)可知,,(否則),
下設(shè),
則由于為正整數(shù)知必為正整數(shù),
,
,
化簡上式關(guān)系式可以知道:,
均為偶數(shù),
設(shè),
則
,
由于中必存在偶數(shù),
只需中存在數(shù)為的倍數(shù)即可,
,
.
檢驗: 符合題意,
共有個,
綜上所述:共有個數(shù)對符合題意.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.
(1)求的方程;
(2)直線交于,兩點,且.已知上存在點,使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年國慶節(jié)假期期間,某商場為掌握假期期間顧客購買商品人次,統(tǒng)計了10月1日7:00﹣23:00這一時間段內(nèi)顧客購買商品人次,統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)顧客購買商品共5000人次顧客購買商品時刻的的頻率分布直方圖如下圖所示,其中時間段7:0011:00,11:0015:00,15:00~19:00,19:00~23:00,依次記作[7,11),[11,15),[15,19),[19,23].
(1)求該天顧客購買商品時刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)由頻率分布直方圖可以近似認(rèn)為國慶節(jié)假期期間該商場顧客購買商品時刻服從正態(tài)分布N(μ,δ2),其中μ近似為,δ=3.6,估計2019年國慶節(jié)假期期間(10月1日﹣10月7日)該商場顧客在12:12﹣19:24之間購買商品的總?cè)舜危ńY(jié)果保留整數(shù));
(3)為活躍節(jié)日氣氛,該商場根據(jù)題中的4個時間段分組,采用分層抽樣的方法從這5000個樣本中隨機(jī)抽取10個樣本(假設(shè)這10個樣本為10個不同顧客)作為幸運(yùn)客戶,再從這10個幸運(yùn)客戶中隨機(jī)抽取4人每人獎勵500元購物券,其他幸運(yùn)客戶每人獎勵200元購物券,記獲得500元購物券的4人中在15:00﹣19:00之間購買商品的人數(shù)為X,求X的分布列與數(shù)學(xué)期望;
參考數(shù)據(jù):若T~N(μ,σ2),則①P(μ﹣σ<T≤μ+σ)=0.6827;②P(μ﹣2σ<T≤μ+2σ)=0.9545;③P(μ﹣3σ<T≤μ+3σ)=0.9973.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的萬件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標(biāo)準(zhǔn)為:首重(重量小于等于)收費元,續(xù)重元(不足按算). (如:一個包裹重量為則需支付首付元,續(xù)重元,一共元快遞費用)
(1)若你有三件禮物重量分別為,要將三個禮物分成兩個包裹寄出(如:合為一個包裹,一個包裹),那么如何分配禮物,使得你花費的快遞費最少?
(2)對該快遞點近天的每日攬包裹數(shù)(單位:件)進(jìn)行統(tǒng)計,得到的日攬包裹數(shù)分別為件,件,件,件,件,那么從這天中隨機(jī)抽出天,求這天的日攬包裹數(shù)均超過件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).
(1)用表示線段并確定的范圍;
(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計到最長,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線與直線垂直,求函數(shù)的極值;
(2)若函數(shù)的圖象恒在直線的下方.
①求的取值范圍;
②求證:對任意正整數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于兩點,連接并延長交于,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)的兩個零點為和.
(1)求的單調(diào)區(qū)間;
(2)若的極小值為,求在區(qū)間上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com