【題目】在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2+b2+ ab=c2 .
(1)求C;
(2)設(shè)cosAcosB= , = ,求tanα的值.
【答案】
(1)解:∵a2+b2+ ab=c2,即a2+b2﹣c2=﹣ ab,
∴由余弦定理得:cosC= = =﹣ ,
又C為三角形的內(nèi)角,
則C=
(2)解:由題意 = = ,
∴(cosA﹣tanαsinA)(cosB﹣tanαsinB)= ,
即tan2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan2αsinAsinB﹣tanαsin(A+B)+cosAcosB= ,
∵C= ,A+B= ,cosAcosB= ,
∴sin(A+B)= ,cos(A+B)=cosAcosB﹣sinAsinB= ﹣sinAsinB= ,即sinAsinB= ,
∴ tan2α﹣ tanα+ = ,即tan2α﹣5tanα+4=0,
解得:tanα=1或tanα=4
【解析】(1)利用余弦定理表示出cosC,將已知等式變形后代入求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù);(2)已知第二個等式分子兩項利用兩角和與差的余弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切,利用多項式乘多項式法則計算,由A+B的度數(shù)求出sin(A+B)的值,進(jìn)而求出cos(A+B)的值,利用兩角和與差的余弦函數(shù)公式化簡cos(A+B),將cosAcosB的值代入求出sinAsinB的值,將各自的值代入得到tanα的方程,求出方程的解即可得到tanα的值.
【考點精析】掌握兩角和與差的余弦公式和余弦定理的定義是解答本題的根本,需要知道兩角和與差的余弦公式:;余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報文科理科的情況如下表所示.
男 | 女 | |
文科 | 2 | 5 |
理科 | 10 | 3 |
(1)若在該樣本中從報考文科的女學(xué)生A.B.C.D.E中隨機(jī)地選出2人召開座談會,試求2人中有A的概率;
(2)用假設(shè)檢驗的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?
參考公式和數(shù)據(jù):.
P(≥) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.07 | 2.71 | 3.84 | 5.02 | 6.64 | 7.88 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時,求f(x)取得最大值和最小值時的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)消防安全意識,某中學(xué)做了一次消防知識講座,從男生中隨機(jī)抽取了50人,從女生中隨機(jī)抽取了70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
總計 | 45 | 75 | 120 |
(1)試判斷能否有90%的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
(2)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率。
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中有個白球和個紅球(,且),每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.
(1)試用含的代數(shù)式表示一次摸球中獎的概率;
(2)若,求三次摸球恰有一次中獎的概率;
(3)記三次摸球恰有一次中獎的概率為,當(dāng)為何值時,取最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1,3,5,7,9這五個數(shù)中,每次取出兩個不同的數(shù)分別記為a,b,共可得到lga﹣lgb的不同值的個數(shù)是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com