【題目】某工廠加工某種零件需要經(jīng)過,三道工序,且每道工序的加工都相互獨立,三道工序加工合格的概率分別為,,.三道工序都合格的零件為一級品;恰有兩道工序合格的零件為二級品;其它均為廢品,且加工一個零件為二級品的概率為.

1)求

2)若該零件的一級品每個可獲利200元,二級品每個可獲利100元,每個廢品將使工廠損失50元,設一個零件經(jīng)過三道工序加工后最終獲利為元,求的分布列及數(shù)學期望.

【答案】12)分布列見解析,

【解析】

1)二級品說明第一道工序不合格,第二、三道工序合格,或第二道工序不合格,第一、三道工序合格,或第三道工序不合格,第一、二道工序合格,由獨立事件的概率公式可計算出;

2的可能取值為200100,,計算出概率后得分布列,由期望公式可計算期望.

1)設零件經(jīng),,三道工序加工合格的事件分別記為,

,,,.

設事件生產(chǎn)一個零件為二級品,由已知,是相互獨立事件,則,

所以.

2的可能取值為200,100,

,

,

,

的分布列為

200

100

-50

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線Cx24y的準線上任意一點P作拋物線的切線PA,PB,切點分別為A,B,則A點到準線的距離與B點到準線的距離之和的最小值是(

A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)當時,求函數(shù)圖象在處的切線方程;

2)求的單調區(qū)間;

3)若不等式恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行四邊形中,點作的垂線交的延長線于點,.連結于點,如圖1,將沿折起,使得點到達點的位置.如圖2.

證明:直線平面

的中點,的中點,且平面平面求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的單調區(qū)間;

2)若不等式時恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)=x3ax2bx+1的導數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.

(1)求曲線yf(x)在點(1,f(1))處的切線方程;

(2)g(x)=f′(x)ex,求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)討論的單調性;

2)若有兩個極值點、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱的所有棱長都是2,,分別是,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值;

3)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案