已知函數(shù)f(ex)=x+ex,g0(x)=ef(x),若gi(x)=gi-1′(x)(i=1,2,3,…),則g2014(x)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:令ex=t(t>0),求得則f(t)=lnt+t,則求出g0(x)=xex,再根據(jù)gi(x)=gi-1′(x),遞推找到規(guī)律,問(wèn)題得以解決.
解答: 解:令ex=t(t>0),則x=lnt(t>0),
則f(t)=lnt+t,
所以g0(x)=ef(x)=ex+lnx=xex,
則由gi(x)=
g
i-1
(x)(i=1,2,3,…)

g1(x)=g0(x)=ex+xexg2(x)=g1(x)=ex+ex+xex=2ex+xex,g3(x)=g2(x)=3ex+xexg4(x)=g3(x)=4ex+xex
所以g2014(x)=(2014+x)ex
故答案為:(2014+x)ex
點(diǎn)評(píng):本題考查函數(shù)解析式的求法及其導(dǎo)函數(shù)的求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若全集U=R,集合A={x|x≥1}∪{x|x≤0},則∁UA=(0,1);
(2)命題“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1≥0”;
(3)已知△ABC的周長(zhǎng)等于18,B、C兩點(diǎn)坐標(biāo)分別為(0,4),(0,-4),A點(diǎn)的軌跡方程
x2
9
+
y2
25
=1;
(4)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2c,以o為圓心,a為半徑作圓M,若過(guò)點(diǎn)P(
a2
c
,0)作圓M的兩條切線相互垂直,則橢圓的離心率為
2
2

以上命題正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過(guò)其右焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線交于M,N 兩點(diǎn),O為坐標(biāo)原點(diǎn).若OM⊥ON,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈R,則函數(shù)y=|x|+
2-x2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log 
1
2
(x+1-
a
x
)在[1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,當(dāng)輸入n=8時(shí),則輸出的S值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

書(shū)架上某一層上原來(lái)有6本不同的書(shū)排成一排,現(xiàn)在要再插入3本不同的書(shū),且恰有2本相鄰的不同插法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=lg(x2-1)+ilg(x-1)(其中i是虛數(shù)單位),若z在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第三象限,則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非零向量
a
,
b
滿足(
a
-2
b
)⊥
a
,(
b
-2
a
)⊥
b
,則向量
a
與向量
b
的夾角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案