【題目】已知拋物線E過點(diǎn)Q(1,2),F為其焦點(diǎn),過F且不垂直于x軸的直線l交拋物線EA,B兩點(diǎn),動點(diǎn)P滿足PAB的垂心為原點(diǎn)O.

1)求拋物線E的方程;

2)求證:動點(diǎn)P在定直線m上,并求的最小值.

【答案】1;(2)證明見解析,的最小值為.

【解析】

1)將點(diǎn)的坐標(biāo)代入拋物線方程,由此求得的值,進(jìn)而求得拋物線的方程.

2)設(shè)出直線的方程,聯(lián)立直線的方程與拋物線的方程,寫出韋達(dá)定理,設(shè)出直線的方程,聯(lián)立直線的方程求得的坐標(biāo),由此判斷出動點(diǎn)在定直線.求得的表達(dá)式,利用基本不等式求得其最小值.

1)將點(diǎn)坐標(biāo)代入拋物線方程得,所以.

2)由(1)知拋物線的方程為,所以,設(shè)直線的方程為,設(shè),由消去,所以.由于為三角形的垂心,所以,所以直線的方程為,即.同理可求得直線的方程為.,結(jié)合,解得,所以在定直線.

直線的方程為,到直線的距離為,到直線的距離為.所以,當(dāng)且僅當(dāng)時取等號.所以的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知圓的方程為,直線的參數(shù)方程為為參數(shù),為直線的傾斜角).

(1)寫出圓的極坐標(biāo)方程和直線的普通方程;

(2)若為圓上任意一點(diǎn),求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若處的切線方程為

I)求實(shí)數(shù)a,b的值;

(Ⅱ)證明,函數(shù)x軸的上方無圖像;

(Ⅲ)確定實(shí)數(shù)k的取值范圍,使得存在,當(dāng)時,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)若 ,且函數(shù) 在區(qū)間 上單調(diào)遞增,求實(shí)數(shù)a的范圍;

2)若函數(shù)有兩個極值點(diǎn) , 且存在 滿足 ,令函數(shù) ,試判斷 零點(diǎn)的個數(shù)并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面中點(diǎn).

1)證明:平面;

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且的極小值為.

(Ⅰ)求的值;

(Ⅱ)若過點(diǎn)可作三條不同的直線與曲線相切,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2ρ24ρcosθ+30

1)求曲線C1的一般方程和曲線C2的直角坐標(biāo)方程;

2)若點(diǎn)P在曲線C1上,點(diǎn)Q曲線C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為自然對數(shù)的底數(shù)),.

(1)當(dāng)時,求函數(shù)的極小值;

(2)當(dāng)時,關(guān)于的方程有且只有一個實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知圓F1(x+1)2 +y2= r2(1≤r≤3),圓F2(x-1)2+y2= (4-r)2

(1)證明:圓F1與圓F2有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;

(2)已知點(diǎn)Q(m,0)(m<0),過點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k2,是否存在實(shí)數(shù)m使得k(k1+k2)為定值?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案