若正數(shù)項數(shù)列的前項和為,首項,點在曲線上.
(1)求;
(2)求數(shù)列的通項公式;
(3)設(shè),表示數(shù)列的前項和,若恒成立,求及實數(shù)的取值范圍.
(1),.;(2);(3),.
解析試題分析:(1)分別取和,可求;(2)將點P代入曲線方程,化簡,可得:,從而數(shù)列是以為首項,1為公差的等差數(shù)列,可求得;(3)用裂項相消法可求解.
試題解析:(1)因為點在曲線上,所以.
分別取和,得到,
由解得,.
(2)由得.
所以數(shù)列是以為首項,1為公差的等差數(shù)列
所以, 即
由公式,得
所以
(3)因為,所以,
顯然是關(guān)于的增函數(shù), 所以有最小值
由于恒成立,所以,
于是的取值范圍為.
考點:(1)數(shù)列前n項和與通項公式之間的關(guān)系;(2)等差數(shù)列的證明,等差數(shù)列的通項公式;(3)裂項相消法.
科目:高中數(shù)學 來源: 題型:解答題
若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點在函數(shù)的圖象上,其中為正整數(shù).
(Ⅰ)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前項積為,即,求;
(Ⅲ)在(Ⅱ)的條件下,記,求數(shù)列的前項和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在數(shù)列中,().
(1)求的值;
(2)是否存在常數(shù),使得數(shù)列是一個等差數(shù)列?若存在,求的值及的通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前項和為,,是與的等差中項().
(Ⅰ)證明數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)是否存在正整數(shù),使不等式()恒成立,若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)是正數(shù)組成的數(shù)列,.若點在函數(shù)的導函數(shù)圖像上.
(1)求數(shù)列的通項公式;
(2)設(shè),是否存在最小的正數(shù),使得對任意都有成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項和Sn滿足且
(Ⅰ)求數(shù)列{an}和{bn}的通項公式:
(Ⅱ)設(shè)Tn為數(shù)列{Sn}的前n項和,求Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列中,,,若數(shù)列滿足.
(Ⅰ)證明:數(shù)列是等差數(shù)列,并寫出的通項公式;
(Ⅱ)求數(shù)列的通項公式及數(shù)列中的最大項與最小項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點在函數(shù)圖象上,過點的切線的方向向量為(>0).
(Ⅰ)求數(shù)列的通項公式,并將化簡;
(Ⅱ)設(shè)數(shù)列的前n項和為Sn,若≤Sn對任意正整數(shù)n均成立,求實數(shù)的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com