(1)已知定點、,動點N滿足(O為坐標原點),,,求點P的軌跡方程.

(2)如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,

(。┰O直線的斜率分別為、,求證:為定值;
(ⅱ)當點運動時,以為直徑的圓是否經(jīng)過定點?請證明你的結論.
(1);(2)(。;(ⅱ)定點.

試題分析:(Ⅰ)由題意,先確定點N是MF1中點,然后由確定|PM|=|PF1|,從而得到|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|,再根據(jù)雙曲線的幾何性質(zhì),即可得到點P的軌跡方程;(2)(ⅰ)設出點,由斜率公式得到的表達式,再根據(jù)點在橢圓上,得到其為定值;(ⅱ)將以為直徑的圓上任一點坐標設出,即設點,再根據(jù)過直徑的弦所對的圓周角為直角這一幾何性質(zhì)得到,從而得到點的軌跡方程也即以為直徑的圓的方程為
.因為的系數(shù)有參數(shù),故,從而得到圓上定點.即得到所求.
試題解析:(Ⅰ)連接ON∵ ∴點N是MF1中點 ∴|MF2|=2|NO|=2
 ∴F1M⊥PN   ∴|PM|=|PF1|
∴|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|
由雙曲線的定義可知:點P的軌跡是以F1,F(xiàn)2為焦點的雙曲線.
點P的軌跡方程是  4分
(。,,令,則由題設可知
直線的斜率,的斜率,又點在橢圓上,所以
,(),從而有.8分
(ⅱ)設點是以為直徑的圓上任意一點,則,又易求得.所以、.故有
.又,化簡后得到以為直徑的圓的方程為
.
,解得.
所以以為直徑的圓恒過定點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,且,長軸的一個端點與短軸兩個端點組成等邊三角形的三個頂點.
(1)求橢圓方程;
(2)設橢圓與直線相交于不同的兩點M、N,又點,當時,求實數(shù)m的取值范圍,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓及定點,點是圓上的動點,點上,且滿足點的軌跡為曲線。
(1)求曲線的方程;
(2)若點關于直線的對稱點在曲線上,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得始終平分?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知、分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點,若弦的中點為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點.
(1)如果直線l過拋物線的焦點,求·的值;
(2)如果·=-4,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓、是其左右焦點,離心率為,且經(jīng)過點.
(1)求橢圓的標準方程;
(2)若、分別是橢圓長軸的左右端點,為橢圓上動點,設直線斜率為,且,求直線斜率的取值范圍;
(3)若為橢圓上動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線.過點的直線兩點.拋物線在點處的切線與在點處的切線交于點

(Ⅰ)若直線的斜率為1,求
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設AB是橢圓的長軸,點C在橢圓上,且,若AB=4,,則橢圓的兩個焦點之間的距離為________.

查看答案和解析>>

同步練習冊答案