已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,若拋物線的準(zhǔn)線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于,則拋物線的方程為( )
A.y2=4
B.y2=8
C.x2=4y
D.x2=8y
【答案】分析:設(shè)出拋物線y2=2px,得出其準(zhǔn)線與雙曲線5x2-y2=20的兩條漸近線方程是解決本題的關(guān)鍵,然后確定三角形的形狀和邊長利用面積公式求出三角形的面積,從而建立關(guān)于p的方程求解即可.
解答:解:設(shè)拋物線y2=2px,準(zhǔn)線為x=-,
雙曲線5x2-y2=20的兩條漸近線方程分別為:y=x,y=-x,
這三條直線構(gòu)成三角形面積等于×2×××=4
∴p=4.則拋物線的方程為y2=8x.
故選B.
點(diǎn)評(píng):本題考查三角形形狀的確定和面積的求解,考查雙曲線標(biāo)準(zhǔn)方程與其漸近線方程的聯(lián)系,拋物線標(biāo)準(zhǔn)方程與其準(zhǔn)線方程的聯(lián)系,考查學(xué)生直線方程的書寫,考查學(xué)生分析問題解決問題的能力,屬于基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044

已知拋物線C的對(duì)稱軸與y軸平行,頂點(diǎn)到原點(diǎn)的距離為5,若將拋物線C向上平移3個(gè)單位,則在x軸上截得的線段為原拋物線C在x軸上截得的線段的一半;若將拋物線C向左平移1個(gè)單位,則所得拋物線過原點(diǎn),求拋物線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案