【題目】設(shè)命題“關(guān)于的不等式對(duì)任意恒成立”,命題“函數(shù)在區(qū)間上是增函數(shù)”.

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若為假,為真,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】

(1)根據(jù)為真時(shí)函數(shù)在區(qū)間[1,2]上是增函數(shù),得到時(shí)恒成立,分離m,求得不等式右邊的最大值即可.

(2)先求出組成復(fù)合命題的簡(jiǎn)單命題分別為真時(shí)m的取值范圍,再分別求出當(dāng)pq假時(shí)和當(dāng)qp假時(shí)m的取值范圍,再求并集可得答案.

(1)若為真,則函數(shù)在區(qū)間[1,2]上是增函數(shù),

所以時(shí)恒成立

恒成立,

設(shè).則.

,解得,所以遞減,在遞增,

因?yàn)?/span>,所以,

又當(dāng)m≥6時(shí),在區(qū)上是增函數(shù)

所以當(dāng)為真時(shí),m≥6

(2)因?yàn)殛P(guān)于x的不等式對(duì)任意恒成立

,即m≥1,當(dāng)命題p為真時(shí),

為假,為真

一真一假,

①當(dāng)pq假時(shí),解得1≤m<6;

②當(dāng)pq真時(shí),解得

綜上:實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】7位歌手(17號(hào))參加一場(chǎng)歌唱比賽,由500名大眾評(píng)委現(xiàn)場(chǎng)投票決定歌手名次.根據(jù)年齡將大眾評(píng)委分為五組,各組的人數(shù)如下:

組別

A

B

C

D

E

人數(shù)

50

100

150

150

50

1)為了調(diào)查評(píng)委對(duì)7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組抽取了6人,請(qǐng)將其余各組抽取的人數(shù)填入下表.

組別

A

B

C

D

E

人數(shù)

50

100

150

150

50

抽取人數(shù)


6




2)在(1)中,若A,B兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知p:方程有兩個(gè)不等的負(fù)實(shí)根,q:方程

無(wú)實(shí)根,若為真,為假,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且在軸上截得線段的長(zhǎng)為 4,直線軸于點(diǎn).

(1)求動(dòng)圓圓心的軌跡的方程;

(2)直線與軌跡交于兩點(diǎn),分別以為切點(diǎn)作軌跡的切線交于點(diǎn),若.試判斷實(shí)數(shù)所滿足的條件,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A. 命題”,則:“

B. 命題“若,則”的否命題是真命題

C. 為假命題,則為假命題

D. 的充分不必要條件,則的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,

直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓相切.

)求橢圓C的方程;

)設(shè)P為橢圓C上一點(diǎn),若過(guò)點(diǎn)的直線與橢圓C相交于不同的兩點(diǎn)ST,

滿足O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若有兩個(gè)零點(diǎn),求的范圍;

2)若有兩個(gè)極值點(diǎn),求的范圍;

3)在(2)的條件下,若的兩個(gè)極值點(diǎn)為 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運(yùn)營(yíng)公司為了了解某地區(qū)用戶對(duì)其所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了40個(gè)用戶,得到用戶的滿意度評(píng)分如下:

用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評(píng)分?jǐn)?shù)據(jù)為92.

(1)請(qǐng)你列出抽到的10個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);

(2)計(jì)算所抽到的10個(gè)樣本的均值和方差

(3)在(2)條件下,若用戶的滿意度評(píng)分在之間,則滿意度等級(jí)為“級(jí)”.試應(yīng)用樣本估計(jì)總體的思想,估計(jì)該地區(qū)滿意度等級(jí)為“級(jí)”的用戶所占的百分比是多少?(精確到)

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行射擊比賽,各射擊局,每局射擊次,射擊命中目標(biāo)得分,未命中目標(biāo)得分,兩人局的得分情況如下:

)若從甲的局比賽中,隨機(jī)選取局,求這局的得分恰好相等的概率.

)如果,從甲、乙兩人的局比賽中隨機(jī)各選取局,記這局的得分和為,求的分布列和數(shù)學(xué)期望.

)在局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案