設(shè)f(x)和g(x)是定義在R上的兩個(gè)函數(shù),x1、x2是R上任意兩個(gè)不等的實(shí)根,設(shè)|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且y=f(x)為奇函數(shù),判斷函數(shù)y=g(x)的奇偶性并說(shuō)明理由.
分析:由y=f(x)為奇函數(shù),令x1=x,x2=-x代入不等式可求得g(x)+g(-x)=0,根據(jù)奇偶函數(shù)的定義即可作出判斷.
解答:解:函數(shù)y=g(x)為奇函數(shù),以下證明:
令x1=x,x2=-x,
則|f(x1)+f(x2)|≥|g(x1)+g(x2)|即為|f(x)+f(-x)|≥|g(x)+g(-x)|,
又由已知y=f(x)為奇函數(shù),故f(x)+f(-x)=0,
所以|g(x)+g(-x)|≤0,可知g(x)+g(-x)=0對(duì)任意的x都成立,
又g(x)是定義在R上的函數(shù),定義域關(guān)于原點(diǎn)對(duì)稱(chēng),
所以y=g(x)為奇函數(shù).
點(diǎn)評(píng):本題考查函數(shù)奇偶性的性質(zhì)及其判斷,屬中檔題,解決本題的關(guān)鍵是充分利用y=f(x)的奇偶性給不等式恰當(dāng)賦值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線(xiàn)x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)點(diǎn)(0,1)和(1,4),且對(duì)于任意的實(shí)數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f′(x)和g′(x)分別是f(x)和g(x)的導(dǎo)函數(shù),若f′(x)g′(x)≤0在區(qū)間I上恒成立,則稱(chēng)f(x)和g(x)在區(qū)間I上單調(diào)性相反.若函數(shù)f(x)=
1
3
x3-2ax與g(x)=x2+2bx在開(kāi)區(qū)間(a,b)上單調(diào)性相反(a>0),則b-a的最大值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線(xiàn)x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案