對(duì)于函數(shù)f(x)(x∈D),若x∈D時(shí),恒有成立,則稱函數(shù)是D上的J函數(shù).

(Ⅰ)當(dāng)函數(shù)f(x)=mlnx是J函數(shù)時(shí),求m的取值范圍;

(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),

試比較g(a)與g(1)的大;

求證:對(duì)于任意大于1的實(shí)數(shù)x1,x2,x3, ,xn,均有g(shù)(ln(x1+x2+ +xn))

>g(lnx1)+g(lnx2)+ +g(lnxn).

 

【答案】

(Ⅰ);(Ⅱ)①,②先征得,取不同的值得到的式子累加即可得證.

【解析】

試題分析:(Ⅰ)先求得,再由,解得;(Ⅱ)①構(gòu)造函數(shù),證明上的增函數(shù),再討論就可得到,②先證得,

即得,

整理得,

同理可得類似的的等式,累加即可得證.

試題解析:(Ⅰ)由,可得

因?yàn)楹瘮?shù)函數(shù),所以,即,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092200414184147197/SYS201309220042428316669595_DA.files/image020.png">,所以,即的取值范圍為.           (3分)

(Ⅱ)①構(gòu)造函數(shù),則,可得上的增函數(shù),當(dāng)時(shí),,即,得

當(dāng)時(shí),,即,得;

當(dāng)時(shí),,即,得.       (6分)

②因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092200414184147197/SYS201309220042428316669595_DA.files/image034.png">,所以,

由①可知,

所以,整理得,

同理可得, ,.

把上面個(gè)不等式同向累加可得[. (12分)

考點(diǎn):1.恒成立問題;2.導(dǎo)數(shù)在求函數(shù)單調(diào)性、最值的應(yīng)用;3.不等式.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:013

下列說(shuō)法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

下列說(shuō)法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:海南省模擬題 題型:單選題

對(duì)于函數(shù)f (x )=x|x|+px+q,現(xiàn)給出四個(gè)命題,其中所有正確的命題序號(hào)是
①q=0時(shí),f (x )為奇函數(shù);②y=f (x )的圖象關(guān)于(0,q)對(duì)稱;
③p=0,q>0,f (x )有且只有一個(gè)零點(diǎn);④f (x )至多有2個(gè)零點(diǎn);
[     ]
A、①④        
B、①②③      
C、②③      
D、①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案