已知平面向量,,,其中,且函數(shù)的圖象過點(diǎn).
(1)求的值;
(2)將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼牡?倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)在上的最大值和最小值.
(1);(2)最小值,最大值.
【解析】
試題分析:(1)根據(jù)向量的數(shù)量積的坐標(biāo)運(yùn)算,求出代入:
整理便得,再根據(jù)過點(diǎn)可得的值;
(2)將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼牡?倍,縱坐標(biāo)不變,便將函數(shù)中的換成便得函數(shù)的解析式:.
由得.
結(jié)合的圖象可得在上的最大值和最小值.
試題解析:(1) 1分
2分
, 4分
即
∴,
而,
∴. 6分
(2)由(1)得,,
于是,
即. 9分
當(dāng)時,,
所以, 11分
即當(dāng)時,取得最小值,
當(dāng)時,取得最大值. 13分
考點(diǎn):1、向量的坐標(biāo)運(yùn)算;2、三角變換;3、三角函數(shù)的圖象變換;4、三角函數(shù)的最值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
AB |
AP |
2 |
2 |
7π |
4 |
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AB |
AB |
AP |
2 |
2 |
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AB |
AB |
AP |
2 |
2 |
π |
4 |
π |
4 |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本題滿分12分)已知對任意的平面向量,把繞其起點(diǎn)沿逆時針方向旋轉(zhuǎn)角,得到向量,叫做把點(diǎn)B繞點(diǎn)A逆時針方向旋轉(zhuǎn)角得到點(diǎn)P
①已知平面內(nèi)的點(diǎn)A(1,2),B,把點(diǎn)B繞點(diǎn)A沿逆時針方向旋轉(zhuǎn)后得到點(diǎn)P,求點(diǎn)P的坐標(biāo)
②設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞逆時針方向旋轉(zhuǎn)后得到的點(diǎn)的軌跡是曲線,求原來曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆安徽省銅陵市高一3月月考數(shù)學(xué)試卷 題型:解答題
(本小題滿分13分)
已知對任意平面向量,把繞其起點(diǎn)沿逆時針方向旋轉(zhuǎn)角得到向量,叫做把點(diǎn)繞點(diǎn)逆時針方向旋轉(zhuǎn)角得到點(diǎn)。
(1)已知平面內(nèi)點(diǎn),點(diǎn)。把點(diǎn)繞點(diǎn)沿逆時針旋轉(zhuǎn)后得到點(diǎn),求點(diǎn)的坐標(biāo);
(2)設(shè)平面內(nèi)直線上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時針方向旋轉(zhuǎn)后得到的點(diǎn)組成的直線方程是,求原來的直線方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com