已知A,B是圓x2+y2=2上兩動點,O是坐標原點,且∠AOB=120°,以A,B為切點的圓的兩條切線交于點P,則點P的軌跡方程為   
【答案】分析:由對稱性可知,動點P軌跡一定是圓心在原點的圓,求出|OP|即可得到點P的軌跡方程.
解答:解:由題意,A,O,B,P四點共圓,且圓的直徑為OP
∵∠AOB=120°,PA,PB為圓的切線
∴∠AOP=60°
∵|OA|=,∠OAP=90°
∴|OP|=2
∴點P的軌跡方程為x2+y2=8
故答案為:x2+y2=8.
點評:本題考查軌跡方程的求法,確定A,O,B,P四點共圓,且圓的直徑為OP是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A、B是圓x2+y2=4上滿足條件
OA
OB
的兩個點,其中O是坐標原點,分別過A、B作x軸的垂線段,交橢圓x2+4y2=4于A1、B1點,動點P滿足
A1P
+2
PB1
=
0

(I)求動點P的軌跡方程
(II)設(shè)S1和S2分別表示△PAB和△B1A1A的面積,當點P在x軸的上方,點A在x軸的下方時,求S1+S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•許昌三模)已知A,B是圓x2+y2=2上兩動點,O是坐標原點,且∠AOB=120°,以A,B為切點的圓的兩條切線交于點P,則點P的軌跡方程為
x2+y2=8
x2+y2=8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:已知A,B是圓x2+y2=4與x軸的交點,P為直線l:x=4上的動點,PA,PB與圓x2+y2=4的另一個交點分別為M,N.
(1)若P點坐標為(4,6),求直線MN的方程;
(2)求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B是圓x2+y2=1與x軸的兩個交點,CD是垂直于AB的動弦,直線AC和DB相交于點P,問是否存在兩個定點E、F,使||PE|-|PF||為定值?若存在,求出E、F的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年吉林省高考數(shù)學模擬試卷(理科)(解析版) 題型:解答題

已知A、B是圓x2+y2=4上滿足條件的兩個點,其中O是坐標原點,分別過A、B作x軸的垂線段,交橢圓x2+4y2=4于A1、B1點,動點P滿足
(I)求動點P的軌跡方程
(II)設(shè)S1和S2分別表示△PAB和△B1A1A的面積,當點P在x軸的上方,點A在x軸的下方時,求S1+S2的最大值.

查看答案和解析>>

同步練習冊答案