【題目】省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計劃采用隨機數(shù)表法從該品牌粒種子中抽取粒進(jìn)行檢測,現(xiàn)將這粒種子編號如下,,,,若從隨機數(shù)表第行第列的數(shù)開始向右讀,則所抽取的第粒種子的編號是 .(下表是隨機數(shù)表第行至第行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

【答案】507

【解析】

試題依據(jù)隨機數(shù)表,抽取的編號依次為785,567,199,507.第四粒編號為507

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.

(1)若,證明:函數(shù)必有局部對稱點;

(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)的取值范圍;

(3)若函數(shù)上有局部對稱點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是(
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.

(1)求證:BD平面PAC; (2)求二面角P-BD-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是(
A.[ ]
B.[ , ]
C.[ , ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點,且

(1)求橢圓的方程;

(2)設(shè)點是橢圓上的一個動點,且直線與直線分別交于 兩點.是否存在點使得以 為直徑的圓經(jīng)過點?若存在,求出點的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,為棱的中點,

(1)證明;

(2)若點為棱上一點,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,f(A)=2,a= ,b+c=3(b>c),求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天做若干個生日蛋糕,每個制作成本為50元,當(dāng)天以每個100元售出,若當(dāng)天白天售不出,則當(dāng)晚以30元/個價格作普通蛋糕低價售出,可以全部售完.

(1)若蛋糕店每天做20個生日蛋糕,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天生日蛋糕的需求量(單位:個, )的函數(shù)關(guān)系;

(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個)整理得下表:

(ⅰ)假設(shè)蛋糕店在這100天內(nèi)每天制作20個生日蛋糕,求這100天的日利潤(單位:元)的平均數(shù);

(ⅱ)若蛋糕店一天制作20個生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當(dāng)天利潤不少于900元的概率.

查看答案和解析>>

同步練習(xí)冊答案