已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的焦距為,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.
(1)求橢圓的方程.
(2)設斜率為的直線與相交于、兩點,記面積的最大值為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,點P到兩圓C1與C2的圓心的距離之和等于4,其中C1:,C2:. 設點P的軌跡為.
(1)求C的方程;
(2)設直線與C交于A,B兩點.問k為何值時?此時的值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M的直線l與曲線E交于點A、B,且=-2.
(1)若點B的坐標為(0,2),求曲線E的方程;
(2)若a=b=1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.
(1)求證:A、M、B三點的橫坐標成等差數(shù)列;
(2)設直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關于m的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程;
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,兩條相交線段、的四個端點都在拋物線上,其中,直線的方程為,直線的方程為.
(1)若,,求的值;
(2)探究:是否存在常數(shù),當變化時,恒有?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com