已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點(diǎn)M的直線l與曲線E交于點(diǎn)A、B,且=-2.
(1)若點(diǎn)B的坐標(biāo)為(0,2),求曲線E的方程;
(2)若a=b=1,求直線AB的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的方程為,其中.
(1)求橢圓形狀最圓時的方程;
(2)若橢圓最圓時任意兩條互相垂直的切線相交于點(diǎn),證明:點(diǎn)在一個定圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓:,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個焦點(diǎn)為,其短軸上的一個端點(diǎn)到的距離為.
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動點(diǎn),過點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
(。┊(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時,求直線的方程,
并證明;
(ⅱ)求證:線段的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖;已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)M、N.
(1)求橢圓C的方程;
(2)求的最小值,并求此時圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn)。求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動點(diǎn)P與A、B連線的斜率之積為-.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為r.
(ⅰ)求圓M的方程;
(ⅱ)當(dāng)r變化時,是否存在定直線l與動圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線=1的離心率為2,焦點(diǎn)到漸近線的距離等于,過右焦點(diǎn)F2的直線l交雙曲線于A、B兩點(diǎn),F(xiàn)1為左焦點(diǎn).
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn)F(0,1)和直線l1:y=-1,過定點(diǎn)F與直線l1相切的動圓圓心為點(diǎn)C.
(1)求動點(diǎn)C的軌跡方程;
(2)過點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求·的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否同時存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點(diǎn)在軸上的雙曲線漸近線方程為;
(2)點(diǎn)到雙曲線上動點(diǎn)的距離最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E滿足=λ,雙曲線過C、D、E三點(diǎn),且以A、B為焦點(diǎn).當(dāng)≤λ≤時,求雙曲線離心率e的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com