19.(12分)
解:(1)取的中點(diǎn),連結(jié)、,則由底面,,知,又,∴平面,∴,∴平面SBC,∴即為點(diǎn)N到平面SBC的距離.
由題易知,所以.…………5分
(2)(方法一)在直角三角形中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052322393454683982/SYS201205232240349687382381_DA.files/image017.png">為的中點(diǎn),所以。由(1)知,所以,作于點(diǎn),連結(jié),則,所為二面角的平面角.
在三角形中,易知,故可求,所以,在中,由余弦定理可得,所以,即二面角的大小為. …………12分
(方法二)過C作交AB于D,如圖建立空間直角坐標(biāo)系,則易知點(diǎn)、、、、、,則、、,
設(shè)平面的法向量為,則由,得故可取,
再設(shè)平面的法向量為,則由,得故可取,則向量與的夾角大小即為二面角的大小。
,故二面角的大小 …………12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,三棱錐SABC中,SC丄底面ABC,,,M為SB中點(diǎn),N在AB上,滿足
(I)求點(diǎn)N到平面SBC的距離;
(II)求二面角C-MN-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,三棱錐SABC中,SC丄底面ABC,,,M為SB中點(diǎn),N在AB上,滿足
(I)求點(diǎn)N到平面SBC的距離;
(II)求二面角C-MN-B的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com