【題目】若對任意, 有唯一確定的與之對應(yīng),則稱為關(guān)于, 的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的為關(guān)于實數(shù), 的廣義距離

)非負(fù)性: ,當(dāng)且僅當(dāng)時取等號;

)對稱性: ;

)三角形不等式: 對任意的實數(shù)均成立.

給出三個二元函數(shù):①;,

則所有能夠成為關(guān)于, 的廣義距離的序號為__________

【答案】

【解析】對于①,由于,故滿足非負(fù)性;又故滿足對稱性;另外,故滿足三角形不等式。所以①能夠成為關(guān)于 的廣義距離

對于②,不妨設(shè),則有,此時有

,故不成立,所以不滿足三角形不等式,故②不能成為關(guān)于, 的廣義距離

對于③,由于時, 無意義,故③不能成為關(guān)于, 的廣義距離

綜上①符合題意

答案

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且離心率

)求橢圓的方程.

)若橢圓上存在點關(guān)于直線對稱,求的所有取值構(gòu)成的集合,并證明對于 的中點恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點分別為棱的中點, 的重心為,直線垂直于平面.

1)求證:直線平面;

2)求二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:a>b>0的左、右焦點分別為F1,F2,P為橢圓上一點(在x軸上方),連結(jié)PF1并延長交橢圓于另一點Q,設(shè)λ

(1)若點P的坐標(biāo)為1,,PQF2的周長為8,求橢圓C的方程;

(2)若PF2垂直于x軸,且橢圓C的離心率e[],求實數(shù)λ的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位計劃在一水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.

(1)求未來3年中,設(shè)表示流量超過120的年數(shù),求的分布列及期望;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系

年入流量

發(fā)電機最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,右頂點為,離心離為,點滿足條件

Ⅰ)求的值.

Ⅱ)設(shè)過點的直線與橢圓相交于、兩點,記的面積分別為、,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求證:平面ABC平面ACD;

(2)EAB中點,求點A到平面CED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點

1)求點的軌跡的方程;

2)設(shè)圓與點的軌跡交于不同的四個點,求四邊形的面積的最大值及相應(yīng)的四個點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù), 為自然對數(shù)的底數(shù).

1)若在區(qū)間上的最大值為,求的值;

2)當(dāng)時,判斷方程是否有實根?若無實根請說明理由,若有實根請給出根的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案