雙曲線的焦點坐標(biāo)為                
本試題主要是考查了雙曲線的性質(zhì)的運用。
因為雙曲線,化為標(biāo)準(zhǔn)式后,可知,因此可知焦點在y軸上,那么焦點坐標(biāo)為,故答案為。
解決該試題的關(guān)鍵是化為標(biāo)準(zhǔn)方程,然后利用a,b的值得到c的值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1F2是雙曲線C:(a>0,b>0)的左、右焦點,過F1的直線與的左、右兩支分別交于AB兩點.若 | AB |: | BF2 |: |AF2 |=3:4 : 5,則雙曲線的離心率為   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線的離心率為,且雙曲線的一個焦點恰好是拋物線
焦點,則雙曲線的標(biāo)準(zhǔn)方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知拋物線的準(zhǔn)線經(jīng)過雙曲線的左焦點,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程; (2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程表示焦點在y軸上的雙曲線,則角在第      _____象限。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦點在軸上的雙曲線的兩條漸近線過坐標(biāo)原點,且兩條漸近線
與以點 為圓心,1為半徑的圓相切,又知的一個焦點與關(guān)于直線
對稱.
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線的左支交于兩點,另一直線經(jīng)過  的中點,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:2x2-y2=2與點P(1,2).求過點P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個交點;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.設(shè)雙曲線實軸長、虛軸長、焦距成等比數(shù)列,則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的左、右焦點分別為F1、F2,過焦點F2且垂直于x軸的直線與雙曲線相交于A、B兩點,若,則雙曲線的離心率為

查看答案和解析>>

同步練習(xí)冊答案