【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點,點是橢圓上的點,是坐標(biāo)原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

)根據(jù)橢圓截直線所得的線段的長度為,可得橢圓過點 ,結(jié)合離心率即可求得橢圓方程;

(Ⅱ)分類討論:當(dāng)直線的斜率不存在時,四邊形的面積為 ; 當(dāng)直線的斜率存在時,設(shè)出直線方程,與橢圓方程聯(lián)立,由 ,代入曲線C,整理出k,m的等量關(guān)系式,再根據(jù) 寫出面積的表達式整理即可得到定值。

(Ⅰ)由解得

得橢圓的方程為.

(Ⅱ)當(dāng)直線的斜率不存在時,直線的方程為,

此時四邊形的面積為

當(dāng)直線的斜率存在時,設(shè)直線方程是,聯(lián)立橢圓方程

到直線的距離是

因為點在曲線上,所以有

整理得

由題意四邊形為平行四邊形,所以四邊形的面積為

, 故四邊形的面積是定值,其定值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù);.

(1)判斷上的單調(diào)性,并說明理由;

(2)求的極值;

(3)當(dāng)時,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,交于點,若平面,.

1)求證:

2)求二面角的大;

3)求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為2;

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓上頂點,左、右頂點分別為.直線且交橢圓于、兩點,點E 關(guān)于軸的對稱點為點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

1)直線與線段相交,其中,,則的取值范圍是;

2)點關(guān)于直線的對稱點為,則的坐標(biāo)為;

3)圓上恰有個點到直線的距離為

4)直線與拋物線交于,兩點,則以為直徑的圓恰好與直線相切.

其中正確的命題有_________.(把所有正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式

(Ⅱ)當(dāng)時,函數(shù)的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱錐中,平面平面,平面平面,分別是邊上的點,且,,,,,,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.

(Ⅰ)求證:平面PBE⊥平面APG;

(Ⅱ)已知AB=2,BC=,側(cè)棱PA與底面ABCDE所成角為45°,S△PBE=,點M在側(cè)棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①離心率,②橢圓過點,③面積的最大值為,這三個條件中任選一個,補充在下面(橫線處)問題中,解決下面兩個問題.

設(shè)橢圓的左、右焦點分別為,過且斜率為的直線交橢圓于兩點,已知橢圓的短軸長為,________.

1)求橢圓的方程;

2)若線段的中垂線與軸交于點,求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案