橢圓
x2
a2
+
y2
b2
=1(a>b>0)和圓x2+y2=(c+
b
2
)2
(其中c為橢圓半焦距)有四個不同的交點,則橢圓離心率的范圍是( 。
A、(
5
5
3
5
B、(
2
5
,
5
5
C、(
2
5
,
3
5
D、(0,
5
5
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意,要有四個交點只須b<r<a,從而可得橢圓離心率的范圍.
解答: 解:要有四個交點只須b<r<a,∴b<
b
2
+c<a,∴2c>b,∴a2=c2+b2<5c2,∴e>
5
5

∵b2<4(a-c)2,∴a2-c2<4(a-c)2,∴a+c<4(a-c),∴5c<3a,∴e<
3
5

故選:A.
點評:本題考查橢圓與圓的位置關(guān)系,考查學(xué)生的計算能力,確定要有四個交點只須b<r<a是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x2+x)導(dǎo)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是(  )
A、若α⊥β,m?α,則m⊥β
B、若α∥β,m?α,n?β,則m∥n
C、若m∥α,n?α則m∥n
D、若m⊥α,m∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x),g(x)的定義域和值域都是R,命題P:?x∈R,f(x)<g(x),則命題P的否定是( 。
A、?x0∈R,使f(x0)<g(x0
B、存在無數(shù)多個實數(shù)x,使得f(x)<g(x)
C、?x∈R,都有f(x)+
1
2
<g(x)
D、存在實數(shù)x,使得f(x)≥g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有( 。
①函數(shù)y=
1
x
的單調(diào)遞增區(qū)間是(-∞,0)∪(0,+∞)
②函數(shù)y=
3x2
的值域是R
③集合{
x
2
|0≤x≤3且x∈Z}={0,
1
2
,1,
3
2
}.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log3x與y=log
1
3
x的圖象( 。
A、關(guān)于y軸對稱
B、關(guān)于直線y=x對稱
C、關(guān)于x軸對稱
D、關(guān)于直線y=-1對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校150名教職工中,有老年人20個,中年人50個,青年人80個,從中抽取30個作為樣本.
①采用隨機抽樣法:抽簽取出30個樣本;
②采用系統(tǒng)抽樣法:將教工編號為00,01,…,149,然后平均分組抽取30個樣本;
③采用分層抽樣法:從老年人,中年人,青年人中抽取30個樣本.
下列說法中正確的是( 。
A、無論采用哪種方法,這150個教工中每一個被抽到的概率都相等
B、①②兩種抽樣方法,這150個教工中每一個被抽到的概率都相等;③并非如此
C、①③兩種抽樣方法,這150個教工中每一個被抽到的概率都相等;②并非如此
D、采用不同的抽樣方法,這150個教工中每一個被抽到的概率是各不相同的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個各項均為正數(shù)的等比數(shù)列,其任何一項都等于它后面兩項之和,則其公比是( 。
A、
-1-
5
2
B、
-1+
5
2
C、
1+
5
2
D、
-1-
5
2
-1+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|
2x-1
x+1
>0},N={x|-3x2+x+2>0},則M∩N=( 。
A、(-∞,-1)∪(1,+∞)
B、(
1
2
,1)
C、(1,+∞)
D、(-∞,-1)∪(-
2
3
,+∞)

查看答案和解析>>

同步練習(xí)冊答案