11.在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題,第一次和第二次都抽取到理科題的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

分析 先求出基本事件總數(shù)n=5×4=20,再求出第一次和第二次都抽取到理科題包含聽基本事件個(gè)數(shù)m=3×2=6,由此能求出第一次和第二次都抽取到理科題的概率.

解答 解:在5道題中有3道理科題和2道文科題,不放回地依次抽取2道題,
基本事件總數(shù)n=5×4=20,
第一次和第二次都抽取到理科題包含聽基本事件個(gè)數(shù)m=3×2=6,
∴第一次和第二次都抽取到理科題的概率為p=$\frac{m}{n}=\frac{6}{20}=\frac{3}{10}$.
故選:C.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知|x-2|+|x+1|>a恒成立,則實(shí)數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f'(x)是f(x)=sinx+acosx的導(dǎo)函數(shù),且f'($\frac{π}{4}$)=$\frac{{\sqrt{2}}}{4}$,則實(shí)數(shù)a的值為(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列判斷錯(cuò)誤的是( 。
A.若p∧q為假命題,則p,q至少之一為假命題
B.命題“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0”
C.冪函數(shù)f(x)=mxm-2在其定義域上為減函數(shù)
D.“若am2<bm2,則a<b”的否命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.把紅、黑、白、藍(lán)4張紙牌隨機(jī)地分給甲、乙、丙、丁4個(gè)人,每個(gè)人分得1張,事件“甲分得紅牌”與“乙分得紅牌”是( 。
A.對(duì)立事件B.不可能事件
C.互斥但不對(duì)立事件D.以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,1),若$\overrightarrow a$•$\overrightarrow b$=|${\overrightarrow a$-$\overrightarrow b}$|,則實(shí)數(shù)m=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0,(mn>0)上,則 $\frac{1}{m}$+$\frac{1}{n}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=ax-x-a(0<a<1)的零點(diǎn)個(gè)數(shù)是( 。
A.1B.0C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線a,b與平面α,b?α,則“a⊥b”是“a⊥α”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案