2.已知f'(x)是f(x)=sinx+acosx的導(dǎo)函數(shù),且f'($\frac{π}{4}$)=$\frac{{\sqrt{2}}}{4}$,則實(shí)數(shù)a的值為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

分析 求出f(x)的導(dǎo)數(shù),由條件解方程,即可得到所求a的值.

解答 解:由題意可得f'(x)=cosx-asinx,
由$f'(\frac{π}{4})=\frac{{\sqrt{2}}}{4}$可得$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}a=\frac{{\sqrt{2}}}{4}$,
解之得$a=\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求函數(shù)值,考查方程思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函數(shù).
(Ⅰ)求a、b的值;
(Ⅱ)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.解不等式a2x+7<a3x-2(a>0,a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用系統(tǒng)抽樣要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為123,則第2組中應(yīng)抽出的號碼是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)公比為q(q≠1)的等比數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=qn+k,那么k等于( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)對任意實(shí)數(shù)x滿足f(x)=-f(x+2),且當(dāng)0≤x≤2時(shí),f(x)=x(2-x),則f(-2017)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在△APC中,點(diǎn)B是AC中點(diǎn),AC=2,∠APB=90°,∠BPC=45°,則$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題,第一次和第二次都抽取到理科題的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=log2g(x)+(k-1)x.
(1)若g(log2x)=x+1,且f(x)為偶函數(shù),求實(shí)數(shù)k的值;
(2)當(dāng)k=1,g(x)=ax2+(a+1)x+a時(shí),若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案