【題目】如圖所示,四棱錐中,底面為菱形, , , 為棱的中點(diǎn),且.

(Ⅰ)求證:平面平面;

(Ⅱ)當(dāng)直線與底面角時(shí),求二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)二面角的余弦值為.

【解析】試題分析:

(Ⅰ) 先證,得到,根據(jù)可得,從而可得,于是平面.(Ⅱ)建立空間直角坐標(biāo)系,求出平面平面的法向量,然后求出兩向量夾角的余弦值,從而可得二面角的余弦值.

試題解析:

(Ⅰ)取的中點(diǎn),連,

,

為等邊三角形,

, ,

,

,

,又

,又

,

平面.

(Ⅱ)由(Ⅰ) 知 ,以分別為軸建立空間直角坐標(biāo)系,如圖所示,設(shè)菱形的邊長(zhǎng)為2,則, ,

因?yàn)橹本與底面角,即

,

,

設(shè)為平面的一個(gè)法向量,

,令,則

設(shè)為平面的一個(gè)法向量,

,令,則 ,

,

由題可知二面角的平面角為鈍角,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率);

;

評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁,試判斷設(shè)備的性能等級(jí).

(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.

①?gòu)脑O(shè)備的生產(chǎn)流水線上隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;

②從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,平面,底面為直角梯形,,,,中點(diǎn).

(1)求證:平面;

(2)若直線與平面所成角的正切值為的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年12月,針對(duì)國(guó)內(nèi)天然氣供應(yīng)緊張的問(wèn)題,某市政府及時(shí)安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅(jiān)戰(zhàn).某研究人員為了了解天然氣的需求狀況,對(duì)該地區(qū)某些年份天然氣需求量進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需求量 (單位:千萬(wàn)立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測(cè)2018年該地區(qū)的天然氣需求量;

(Ⅱ)政府部門(mén)為節(jié)約能源出臺(tái)了《購(gòu)置新能源汽車(chē)補(bǔ)貼方案》,該方案對(duì)新能源汽車(chē)的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補(bǔ)貼金額劃分為三類,A類:每車(chē)補(bǔ)貼1萬(wàn)元,B類:每車(chē)補(bǔ)貼2.5萬(wàn)元,C類:每車(chē)補(bǔ)貼3.4萬(wàn)元.某出租車(chē)公司對(duì)該公司60輛新能源汽車(chē)的補(bǔ)貼情況進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

為了制定更合理的補(bǔ)貼方案,政府部門(mén)決定利用分層抽樣的方式了解出租車(chē)公司新能源汽車(chē)的補(bǔ)貼情況,在該出租車(chē)公司的60輛車(chē)中抽取6輛車(chē)作為樣本,再?gòu)?輛車(chē)中抽取2輛車(chē)進(jìn)一步跟蹤調(diào)查,求恰好有1輛車(chē)享受3.4萬(wàn)元補(bǔ)貼的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖2,在三棱錐A-BCD中,AB=CD=4, AC=BC=AD=BD=3.

(I)證明:ABCD;

(II) E在線段BC上,BE=2EC, F是線段AC的中點(diǎn),求平面ADE與平面BFD所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 與拋物線 相交于, 兩點(diǎn),分別以點(diǎn) 為切點(diǎn)作圓的切線.若切線恰好都經(jīng)過(guò)拋物線的焦點(diǎn),則( )

A. B. C. D.

【答案】A

【解析】由題得設(shè)A, ,聯(lián)立圓E和拋物線得: ,代入點(diǎn)A,AF為圓的切線,故,由拋物線得定義可知:AF=,故化簡(jiǎn)得: ,將點(diǎn)A代入圓得: ,而=,故故選A

點(diǎn)睛:此題幾何關(guān)系較為復(fù)雜,我們根據(jù)問(wèn)題可知借此題關(guān)鍵為找到pr的關(guān)系,我們可根據(jù)圓和拋物線相交結(jié)合拋物線的焦點(diǎn)弦長(zhǎng)結(jié)論綜合計(jì)算可得其關(guān)系,從而求解

型】單選題
結(jié)束】
12

【題目】已知函數(shù)在點(diǎn) 處的切線為,若直線軸上的截距恒小于,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中,已知公差 ,且 , 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意, , 成等比數(shù)列得求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得,得,由,得,∴ 計(jì)算 即可得出結(jié)論

解析:(1)由題意可得,則,

,即,

化簡(jiǎn)得,解得(舍去).

.

(2)由(1)得時(shí),

,得,由,得

.

.

點(diǎn)睛:對(duì)于數(shù)列第一問(wèn)首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問(wèn)前n項(xiàng)的絕對(duì)值的和問(wèn)題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷(xiāo)售公司擬各招聘一名產(chǎn)品推銷(xiāo)員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷(xiāo)售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷(xiāo)售量不超過(guò)45件沒(méi)有提成,超過(guò)45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷(xiāo)員的日工資 (單位: 元) 分別表示為日銷(xiāo)售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷(xiāo)員,對(duì)他們過(guò)去100天的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷(xiāo)員的日工資為,乙公司該推銷(xiāo)員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問(wèn)題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷(xiāo)員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是常數(shù)

Ⅰ)求曲線在點(diǎn)處的切線方程,并證明對(duì)任意,切線經(jīng)過(guò)定點(diǎn);

Ⅱ)證明:時(shí),有兩個(gè)零點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.(1)求的值;(2)若對(duì), 恒成立,求的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案