【題目】已知函數(shù).

1)當時,求函數(shù)的最小值;

2)當時,求函數(shù)的單調區(qū)間;

3)當時,設函數(shù),若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的最大值.

【答案】1 2)答案不唯一,見解析 3

【解析】

1)求導,接著單調區(qū)間,即可得出最小值;

2)求導,對分類討論,可求出函數(shù)的單調區(qū)間;

(3)求出,通過分析,可得到增函數(shù),從而有,轉化為上至少有兩個不同的正根,,轉化為至少有兩個交點,即可求出實數(shù)的最大值.

1)當時,

這時的導數(shù)

,即,解得,

得到,

得到,

故函數(shù)單調遞減,在單調遞增;

故函數(shù)時取到最小值,

;

2)當時,函數(shù)

導數(shù)為

時,,單調遞減,

時,,

時,

時,

即函數(shù)在區(qū)間,上單調遞減,

在區(qū)間上單調遞增.

時,

時,,

時,,

函數(shù)在區(qū)間上單調遞減,

在區(qū)間上單調遞增.

綜上,若時,函數(shù)的減區(qū)間為,無增區(qū)間,

時,函數(shù)的減區(qū)間為,,增區(qū)間為,

時,函數(shù)的減區(qū)間為,增區(qū)間為.

3)當時,設函數(shù).

,,

時,為增函數(shù),

,為增函數(shù),

在區(qū)間上遞增,

上的值域是,

所以上至少有兩個不同

的正根,

,求導得,,

,

所以遞增,,

,,∴,

,∴,

所以上遞減,在上遞增,

,∴,

的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,解不等式;

(Ⅱ)若的圖象與x軸圍成圖形的面積大于6,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點,且

(1)求橢圓的方程;

(2)設點是橢圓上的一個動點,且直線與直線分別交于 兩點.是否存在點使得以 為直徑的圓經(jīng)過點?若存在,求出點的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,ABE的中點沿AD折到位置如圖,連結PC,PB構成一個四棱錐

求證;

平面ABCD

求二面角的大;

在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考方案規(guī)定,普通高中學業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據(jù)學生考試時的原始卷面分數(shù),由高到低進行排序,評定為、、、五個等級.某試點高中2018年參加“選擇考”總人數(shù)是2016年參加“選擇考”總人數(shù)的2倍,為了更好地分析該校學生“選擇考”的水平情況,統(tǒng)計了該校2016年和2018年“選擇考”成績等級結果,得到如下圖表:

針對該!斑x擇考”情況,2018年與2016年比較,下列說法正確的是( )

A. 獲得A等級的人數(shù)減少了B. 獲得B等級的人數(shù)增加了1.5倍

C. 獲得D等級的人數(shù)減少了一半D. 獲得E等級的人數(shù)相同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解運動健身減肥的效果,某健身房調查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關于這20名肥胖者,下面結論不正確的是(

A.他們健身后,體重在區(qū)間[90kg,100kg)內的人數(shù)不變

B.他們健身后,體重在區(qū)間[100kg,110kg)內的人數(shù)減少了4

C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg

D.他們健身后,原來體重在[110kg,120kg]內的肥胖者體重都至少減輕了10kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是國家統(tǒng)計局公布的2013-2018年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是(

A.2014年我國入境游客萬人次最少

B.4年我國入境游客萬人次呈逐漸增加趨勢

C.6年我國入境游客萬人次的中位數(shù)大于13340萬人次

D.3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)歷年大學生就業(yè)統(tǒng)計資料顯示:某大學理工學院學生的就業(yè)去向涉及公務員、教師、金融、商貿、公司和自主創(chuàng)業(yè)等六大行業(yè).2020屆該學院有數(shù)學與應用數(shù)學、計算機科學與技術和金融工程等三個本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210.現(xiàn)采用分層抽樣的方法,從該學院畢業(yè)生中抽取18人調查學生的就業(yè)意向.

1)應從該學院三個專業(yè)的畢業(yè)生中分別抽取多少人?

2)國家鼓勵大學生自主創(chuàng)業(yè),在抽取的18人中,含有“自主創(chuàng)業(yè)”就業(yè)意向的有6人,且就業(yè)意向至少有三個行業(yè)的學生有7.為方便統(tǒng)計,將至少有三個行業(yè)就業(yè)意向的這7名學生分別記為,,,,,,統(tǒng)計如下表:

其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無該行業(yè)就業(yè)意向.

①試估計該學院2020屆畢業(yè)生中有自主創(chuàng)業(yè)意向的學生人數(shù);

②現(xiàn)從,,,,7人中隨機抽取2人接受采訪.為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.

查看答案和解析>>

同步練習冊答案