分析 由2=$\frac{(a+b)^{2}}{2}$,先將$\frac{a}$+$\frac{1}{ab}$-$\frac{1}{2}$變形為$\frac{5{a}^{2}+^{2}}{4ab}$,運用基本不等式可得最小值,再求$\frac{\sqrt{5}}{2}$c+$\frac{\sqrt{5}}{c-2}$=$\sqrt{5}$[$\frac{1}{2}$(c-2)+$\frac{1}{c-2}$+1]的最小值,運用基本不等式即可得到所求值.
解答 解:a>0,b>0,c>2,且a+b=2,
則$\frac{ac}+\frac{c}{ab}-\frac{c}{2}+\frac{{\sqrt{5}}}{c-2}$=c($\frac{a}$+$\frac{1}{ab}$-$\frac{1}{2}$)+$\frac{\sqrt{5}}{c-2}$
=$\frac{c(2{a}^{2}+2-ab)}{2ab}$+$\frac{\sqrt{5}}{c-2}$,
由2=$\frac{(a+b)^{2}}{2}$,可得$\frac{2{a}^{2}+2-ab}{2ab}$=$\frac{2{a}^{2}+\frac{(a+b)^{2}}{2}-ab}{2ab}$
=$\frac{5{a}^{2}+^{2}}{4ab}$≥$\frac{2\sqrt{5}ab}{4ab}$=$\frac{\sqrt{5}}{2}$,
當且僅當b=$\sqrt{5}$a時,取得等號.
則原式≥$\frac{\sqrt{5}}{2}$c+$\frac{\sqrt{5}}{c-2}$=$\sqrt{5}$[$\frac{1}{2}$(c-2)+$\frac{1}{c-2}$+1]
≥$\sqrt{5}$[2$\sqrt{\frac{1}{2}(c-2)•\frac{1}{c-2}}$+1]
=$\sqrt{10}$+$\sqrt{5}$.
當且僅當c=2+$\sqrt{2}$時,取得等號.
則所求最小值為$\sqrt{10}$+$\sqrt{5}$.
故答案為:$\sqrt{10}$+$\sqrt{5}$.
點評 本題考查基本不等式的運用:求最值,注意變形和滿足的條件:一正二定三等,考查化簡和運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=\frac{1}{16}$ | B. | y=1 | C. | $y=-\frac{1}{16}$ | D. | y=-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{2π}{3}$ | C. | -$\frac{5π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
教育模式 人數(shù)(人) | 在線測評 | 在線課堂 | 自主學習 | 線下延伸 |
25 | √ | √ | √ | |
45 | √ | |||
40 | √ | √ | ||
30 | √ | √ | √ | |
40 | √ | √ | ||
20 | √ | √ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com