精英家教網 > 高中數學 > 題目詳情
11.圓x2+(y-1)2=4上點到曲線f(x)=-x3+3x2在點(1,f(1))處的切線的最遠距離為(  )
A.$\frac{\sqrt{10}}{4}$B.$\frac{10+\sqrt{10}}{5}$C.$\frac{10-\sqrt{10}}{5}$D.$\frac{10+2\sqrt{10}}{5}$

分析 求出曲線f(x)=-x3+3x2在點(1,f(1))處的切線方程,圓心(0,1)到直線的距離,即可得出結論.

解答 解:由題意,f′(x)=-3x2+6x,∴f′(1)=3,
又f(1)=2,∴曲線f(x)=-x3+3x2在點(1,f(1))處的切線方程為3x-y-1=0,
圓心(0,1)到直線的距離為$\frac{2}{\sqrt{9+1}}$=$\frac{\sqrt{10}}{5}$,
∴圓x2+(y-1)2=4上點到曲線f(x)=-x3+3x2在點(1,f(1))處的切線的最遠距離為2+$\frac{\sqrt{10}}{5}$,
故選:B.

點評 本題考查導數知識的綜合運用,考查導數的幾何意義,考查點到直線距離公式的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.直線y=mx+1與曲線x=2+$\sqrt{1-{y}^{2}}$的圖象始終有交點,則m的取值范圍是( 。
A.(-1,0)B.[-1,0]C.(-1,-$\frac{1}{3}$)D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρcos2θ=2sinθ,它在點$M(2\sqrt{2},\frac{π}{4})$處的切線為直線l.
(1)求直線l的直角坐標方程;
(2)已知點P為橢圓$\frac{x^2}{3}+\frac{y^2}{4}$=1上一點,求點P到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若△ABC的三個內角滿足tanAtanBtanC>0,則△ABC是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.任意三角形

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{3}=1(a>0)$的左、右焦點分別為F1,F(xiàn)2,過F2作x軸垂直的直線交雙曲線C于A、B兩點,△F1AB的面積為12,拋物線E:y2=2px(p>0)以雙曲線C的右頂點為焦點.
(Ⅰ)求拋物線E的方程;
(Ⅱ)如圖,點$P({-\frac{P}{2},t})({t≠0})$為拋物線E的準線上一點,過點PM
作y軸的垂線交拋物線于點,連接PO并延長交拋物線于點N,求證:直線MN過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.酒后違法駕駛機動車危害巨大,假設駕駛人員血液中的酒精含量為Q(簡稱血酒含量,單位是毫克/100毫升),當20≤Q≤80時,為酒后駕車;當Q>80時,為醉酒駕車.如圖為某市交管部門在一次夜間行動中依法查出的60名飲酒后違法駕駛機動車者抽血檢測后所得頻率分布直方圖(其中120≤Q<140人數包含Q≥140).
( I)求查獲的醉酒駕車的人數;
( II)從違法駕車的60人中按酒后駕車和醉酒駕車利用分層抽樣抽取8人做樣本進行研究,再從抽取的8人中任取3人,求3人中含有醉酒駕車人數X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.(x2-$\frac{1}{x}$)9的二項展開式中,含x3項的系數是-126.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.下面使用類比推理正確的是( 。
A.由實數運算“(ab)t=a(bt)”類比到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
B.由實數運算“(ab)t=at+bt”類比到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”
C.由實數運算“|ab|=|a||b|”類比到“|$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|”
D.由實數運算“$\frac{ac}{bc}$=$\frac{a}$”類比到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$”

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.二項展開式(2x-1)10中x的奇次冪項的系數之和為$\frac{1-{3}^{10}}{2}$.

查看答案和解析>>

同步練習冊答案