函數(shù)
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

(1);(2)2-2ln2<k3-2ln3

解析試題分析:(1)由當(dāng)a=-2時(shí),函數(shù)h(x)在其定義域(0,)內(nèi)是增函數(shù),可得恒成立,從而通過(guò)分離參數(shù)轉(zhuǎn)化為求函數(shù)的最小值處理.
(2)函數(shù)在[1,3]上恰有兩個(gè)不同的零點(diǎn)等價(jià)于方程 =,在[1,3]上恰有兩個(gè)相異實(shí)根; 等價(jià)于函數(shù)的圖象與直線有兩個(gè)不同的交點(diǎn),利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間與極值,就可畫出的大致圖象,通過(guò)圖象觀查可知從而求得k的取值范圍.
試題解析:(1),則:
恒成立,  
(當(dāng)且僅當(dāng)時(shí),即時(shí),取等號(hào)),   
(2)函數(shù)在[1,3]上恰有兩個(gè)不同的零點(diǎn)等價(jià)于方程 =,在[1,3]上恰有兩個(gè)相異實(shí)根.
 ;當(dāng),;當(dāng)時(shí),;所以在[1,2]上是單調(diào)遞減函數(shù),在(2,3]上是單調(diào)遞增函數(shù);故,又如圖故只需,所以有:2-2ln2<k3-2ln3

考點(diǎn):1.由函數(shù)單調(diào)性求參數(shù)的取值范圍;2.函數(shù)圖象與零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

函數(shù)上是減函數(shù)的一個(gè)充分非必要條件是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義在上的增函數(shù),對(duì)于任意的,都有,且滿足.
(1)求的值;   
(2)求滿足的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)討論的奇偶性;
(3)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),若函數(shù)恰有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在上的三個(gè)函數(shù),,且處取得極值.
(1)求a的值及函數(shù)的單調(diào)區(qū)間.
(2)求證:當(dāng)時(shí),恒有成立.[來(lái)源

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)判定并證明函數(shù)的奇偶性;
(2)試證明在定義域內(nèi)恒成立;
(3)當(dāng)時(shí),恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)f(x)=x2+2bx+c(b、c∈R).
(1)若f(x)≤0的解集為{x|-1≤x≤1},求實(shí)數(shù)b、c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(-3,-2),(0,1)內(nèi),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義函數(shù)(為定義域)圖像上的點(diǎn)到坐標(biāo)原點(diǎn)的距離為函數(shù)的的模.若模存在最大值,則稱之為函數(shù)的長(zhǎng)距;若模存在最小值,則稱之為函數(shù)的短距.
(1)分別判斷函數(shù)是否存在長(zhǎng)距與短距,若存在,請(qǐng)求出;
(2)求證:指數(shù)函數(shù)的短距小于1;
(3)對(duì)于任意是否存在實(shí)數(shù),使得函數(shù)的短距不小于2,若存在,請(qǐng)求出的取值范圍;不存在,則說(shuō)明理由?

查看答案和解析>>

同步練習(xí)冊(cè)答案