(14分)如圖,在三棱錐S—ABC中,是邊長為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分別為AB、SB的中點(diǎn)。

⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點(diǎn)B到平面CMN的距離。

⑴取AC中點(diǎn)O,連結(jié)OS、OB∴SO⊥平面ABC,SO⊥BO如圖建立空間直角坐標(biāo)系O—xyz
  ⑵  ⑶

解析試題分析:⑴ 取AC中點(diǎn)O,連結(jié)OS、OB

∵平面平面ABC,平面SAC平面ABC=AC
∴SO⊥平面ABC, SO⊥BO
如圖建立空間直角坐標(biāo)系O—xyz




⑵ 由⑴得
設(shè)為平面CMN的一個法向量,則,取

為平面ABC的一個法向量

⑶ 由⑴⑵得為平面CMN的一個法向量
∴點(diǎn)B到平面CMN的距離……14分
考點(diǎn):線線垂直的判定,二面角點(diǎn)面距的計(jì)算
點(diǎn)評:本題的關(guān)鍵是由已知條件找到建立空間直角坐標(biāo)系的合適位置,進(jìn)而找到相關(guān)點(diǎn),向量的坐標(biāo),代入線面角點(diǎn)面距的向量計(jì)算公式求解,有一定的難度

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
如圖,在中,邊上的高,,沿翻折,使得得幾何體

(Ⅰ)求證:;
(Ⅱ)求點(diǎn)D到面ABC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,在棱長為3的正方體中,.

⑴求兩條異面直線所成角的余弦值;
⑵求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).(1)求證:PB⊥DM;(2)求CD與平面ADMN所成角的正弦值;(3)在棱PD上是否存在點(diǎn)E,且PE∶ED=λ,使得二面角C-AN-E的平面角為60o.若存在求出λ值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖所示,已知S是正三角形ABC所在平面外的一點(diǎn),且SA=SB=SC,SG為△SAB上的高,D、E、F分別是AC、BC、SC的中點(diǎn),試判斷SG與平面DEF的位置關(guān)系,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)如圖:AD=2,AB=4的長方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).

(1)求四棱錐-的體積;
(2)求證:平面
(3)試問:在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在正四棱錐中,側(cè)棱的長為,所成的角的大小等于

(1)求正四棱錐的體積;
(2)若正四棱錐的五個頂點(diǎn)都在球的表面上,求此球的半徑.

查看答案和解析>>

同步練習(xí)冊答案