精英家教網 > 高中數學 > 題目詳情

圓心在曲線y=(x>0)上,且與直線3x+4y+3=0相切的面積最小的圓的方程為

[  ]

A.(x-2)2+(y-)2=9

B.(x-3)2+(y-1)2=()2

C.(x-1)2+(y-3)2=()2

D.(x-)2+(y-)2=9

練習冊系列答案
相關習題

科目:高中數學 來源:2009年高考數學文科(山東卷) 題型:044

mR,在平面直角坐標系中,已知向量a(mx,y1),向量b(x,y1),ab,動點M(xy)的軌跡為E

()求軌跡E的方程,并說明該方程所表示曲線的形狀;

()已知.證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且OAOB(O為坐標原點),并求該圓的方程;

()已知.設直線l與圓Cx2y2R2(1R2)相切于A1,且l與軌跡E只有一個公共點B1.當R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河北省唐山市高三第二次模擬考試理科數學試卷(解析版) 題型:解答題

已知動圓C經過點(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長的最小值為1,記該圓的圓心的軌跡為E.

(Ⅰ)求曲線E的方程;

(Ⅱ)是否存在曲線C與曲線E的一個公共點,使它們在該點處有相同的切線?若存在,求出切線方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省高三預測卷2數學 題型:解答題

(本小題滿分14分)

如圖,某市擬在道路的一側修建一條運動賽道,賽道的前一部分為曲線段ABC,該曲線段為函數y=(A>0,>0,),x∈[-3,0]的圖象,且圖象的最高點為B(-1,);賽道的中間部分為千米的水平跑到CD;賽道的后一部分為以O圓心的一段圓弧

 (1)求的值和∠DOE的值;

(2)若要在圓弧賽道所對應的扇形區(qū)域內建一個“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個頂點在扇形半徑OD上.記∠POE=,求當“矩形草坪”的面積最大時的值.

 

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省高三預測卷2數學 題型:解答題

(本小題滿分14分)

如圖,某市擬在道路的一側修建一條運動賽道,賽道的前一部分為曲線段ABC,該曲線段為函數y=(A>0,>0,),x∈[-3,0]的圖象,且圖象的最高點為B(-1,);賽道的中間部分為千米的水平跑到CD;賽道的后一部分為以O圓心的一段圓弧

 (1)求,的值和∠DOE的值;

(2)若要在圓弧賽道所對應的扇形區(qū)域內建一個“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個頂點在扇形半徑OD上.記∠POE=,求當“矩形草坪”的面積最大時的值.

 

 

查看答案和解析>>

同步練習冊答案