如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2。

(2)若∠PDC=120°,求四棱錐P—ABCD的體積。

 

【答案】

(Ⅰ)見(jiàn)解析  (Ⅱ)V=

【解析】本試題主要是考查了立體幾何中的面面垂直的證明和棱錐體積的計(jì)算的綜合運(yùn)用。

(1)因?yàn)橐C明面面垂直,只要利用面面垂直的判定定理,先證明線面垂直,然后在得證。

(2)要求解棱錐的體積,關(guān)鍵是求解棱錐的高,借助于余弦定理和解三角形得到

解:

(Ⅰ)∵PA⊥平面ABCD,BCÌ平面ABCD,∴PA⊥BC,又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,∵BCÌ平面PBC,∴平面PBC⊥平面PAB.           …4分

(Ⅱ)連結(jié)AC,則設(shè)PA=a(a>0),則

由余弦定理,cos∠PDC=      …9分

解得a=故四棱錐P—ABCD的體積V=·(AB+CD)·BC·PA=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案