【題目】已知函數(shù).

(1)求f(2),f(x);

(2)證明:函數(shù)f(x)在[1,17]上為增函數(shù);

(3)試求函數(shù)f(x)在[1,17]上的最大值和最小值.

【答案】(1)f(2)=1;.

(2)見解析.

(3)當(dāng)x=1時,f(x)有最小值;當(dāng)x=17時,f(x)有最大值.

【解析】

,即可求得,運用換元法,令,則,代入即可求得函數(shù)的解析式

利用函數(shù)的單調(diào)性定義證明即可

利用的結(jié)論,即可求得最值

(1)令x=1,則f(2)=f(1+1)=1.

tx+1,則xt-1,

所以f(t)=,即f(x)=.

(2)證明:任取1≤x1x2≤17,

因為f(x1)-f(x2)=

.

又1≤x1x2,所以x1x2<0,(x1+1)(x2+1)>0,

所以<0,即f(x1)<f(x2),

所以函數(shù)f(x)在[1,17]上為增函數(shù).

(3)由(2)可知函數(shù)f(x)在[1,17]上為增函數(shù),

所以當(dāng)x=1時,f(x)有最小值

當(dāng)x=17時,f(x)有最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是長軸長為2 的橢圓C: + =1(a>b>0)的左右焦點,A1 , A2是橢圓C的左右頂點,P為橢圓上異于A1 , A2的一個動點,O為坐標(biāo)原點,點M為線段PA2的中點,且直線PA2與OM的斜率之積恒為﹣
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點F1且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點N,點N橫坐標(biāo)的取值范圍是(﹣ ,0),求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-1x2-2,試?yán)没境醯群瘮?shù)的圖象,判斷f(x)有幾個零點,并利用零點存在性定理確定各零點所在的區(qū)間(各區(qū)間長度不超過1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地級市共有中學(xué)生,其中有學(xué)生在年享受了“國家精準(zhǔn)扶貧”政策,在享受“國家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項教育基金”,對這三個等次的困難學(xué)生每年每人分別補助元、元、元.經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生有轉(zhuǎn)為一般困難學(xué)生,特別困難的學(xué)生中有轉(zhuǎn)為很困難學(xué)生.現(xiàn)統(tǒng)計了該地級市年到年共年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中統(tǒng)計量的值,其中年份時代表年,時代表年,……依此類推,且(單位:萬元)近似滿足關(guān)系式.(年至年該市中學(xué)生人數(shù)大致保持不變)

(1)估計該市年人均可支配年收入為多少萬元?

(2)試問該市年的“專項教育基金”的財政預(yù)算大約為多少萬元?

附:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1的對角線AC1上任取一點P,以A為球心,AP為半徑作一個球.設(shè)AP=x,記該球面與正方體表面的交線的長度和為f(x),則函數(shù)f(x)的圖象最有可能的是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.

(1)設(shè)圓求過2,0的直線關(guān)于圓的距離比的直線方程;

(2)若圓軸相切于點0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;

(3)是否存在點,使過的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校高三年級共名男生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于之間,將測量結(jié)果按如下方式分成八組,第一組;第二組,,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

)估計這所學(xué)校高三年級全體男生身高以上(含)的人數(shù).

)求第六組、第七組的頻率并補充完整頻率分布直方圖(鉛筆作圖并用中性筆描黑).

)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為、,求滿足的事件概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex , 下列命題正確的有 . (寫出所有正確命題的編號)
①f(x)是奇函數(shù);
②f(x)在R上是單調(diào)遞增函數(shù);
③方程f(x)=x2+2x有且僅有1個實數(shù)根;
④如果對任意x∈(0,+∞),都有f(x)>kx,那么k的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2) 若由線性回歸方程得到的估計數(shù)據(jù)與4月份所選5天的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請根據(jù)4月74月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?

參考公式: ,

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案