【題目】已知是等差數(shù)列,其前項和為, 是等比數(shù)列,且, , .
(1)求數(shù)列與的通項公式;
(2)求的值.
【答案】(1), .(2)
【解析】試題分析: (1)由等差數(shù)列和等比數(shù)列的基本量運算,可求得公差與公比,進(jìn)而可求得數(shù)列的同項公式;(2)根據(jù)錯位相減法求出的值即可.
試題解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,
由,
得, , ,
由條件得方程組,
解得: ,
故, .
(2),①
,②
①—②,得: ,
∴.
點睛:本題考查等差數(shù)列和等比數(shù)列的基本量運算以及數(shù)列的錯位相減法求和,屬于基礎(chǔ)題目.數(shù)列的求和方法有:公式法,分組求和法,倒序相加法,錯位相減法,裂項相消法,并項求和法等基本方法,其中如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前n項和即可用此法來求,如等比數(shù)列的前n項和就是用此法推導(dǎo)的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;
(2)朝上的一面數(shù)之和小于5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若要得到函數(shù)y=sin(2x﹣ )的圖象,可以把函數(shù)y=sin2x的圖象( )
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱的側(cè)棱與底面垂直,體積為,底面是邊長為的正三角形.若為底面的中心,則與平面所成角的大小為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(2cosωx,cos2ωx), =(sinωx,1)(其中ω>0),令f(x)= ,且f(x)的最小正周期為π.
(1)求 的值;
(2)寫出 上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,離心率為,設(shè)直線的斜率是,且與橢圓交于, 兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若直線在軸上的截距是,求實數(shù)的取值范圍.
(Ⅲ)以為底作等腰三角形,頂點為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點在直線上,且拋物線截直線所得的弦的長為.
(Ⅰ)求拋物線的方程和的值.
(Ⅱ)以弦為底邊,以軸上點為頂點的三角形面積為,求點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,取相同單位長度(其中, ),若傾斜角為且經(jīng)過坐標(biāo)原點的直線與圓相交于點(點不是原點).
(1)求點的極坐標(biāo);
(2)設(shè)直線過線段的中點,且直線交圓于兩點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com