函數(shù)f(x)=excosx的圖象在點(diǎn)(0,f(0))處的切線傾斜角的余弦值為( 。
分析:先求導(dǎo)公式和法則求出導(dǎo)數(shù),再把x=0代入求出切線的斜率,再求出傾斜角和對(duì)應(yīng)的余弦值.
解答:解:由題意得,f′(x)=excosx-exsinx,
∴在點(diǎn)(0,f(0))處的切線的斜率是:
f′(0)=e0cos0-e0sin0=1,
∴在點(diǎn)(0,f(0))處的切線傾斜角是:45°,
則傾斜角的余弦值是:
2
2
,
故選C.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義,即在某點(diǎn)處的切線斜率是該點(diǎn)處的導(dǎo)數(shù)值,以及特殊角的三角函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、已知函數(shù)f(x)=sinx+ex+x2010,令f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),則f2011(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù),奇函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x-lnx的導(dǎo)函數(shù)為f′(x),那么f′(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+ex,令f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),則f2013(x)=( 。
A、sinx+exB、cosx+exC、-sinx+exD、-cosx+ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足:對(duì)定義域內(nèi)的任意x,都有f(x+2)+f(x)<2f(x+1),則函數(shù)f(x)可以是(  )
A、f(x)=2x+1B、f(x)=exC、f(x)=lnxD、f(x)=xsinx

查看答案和解析>>

同步練習(xí)冊(cè)答案