在(
3x
+
1
x
20的展開(kāi)式中,x的冪指數(shù)是整數(shù)的項(xiàng)共有( 。
A.3項(xiàng)B.4項(xiàng)C.5項(xiàng)D.6項(xiàng)
展開(kāi)式的通項(xiàng)公式為Tk+1=
Ck20
?(
3x
)
20-k
?(
1
x
)
k
=
Ck20
?x
20-k
3
-
k
2
=
Ck20
?x
40-5k
6
,
要使,x的冪指數(shù)是整數(shù),
則40-5k必須是6的整數(shù)倍,
∴當(dāng)k=2時(shí),
40-5k
6
=
30
6
=5
,滿足條件.
當(dāng)k=8時(shí),
40-5k
6
=0,滿足條件.
當(dāng)k=14時(shí),
40-5k
6
=
40-70
6
=-
30
6
=-5
,滿足條件.
當(dāng)k=20時(shí),
40-5k
6
=
40-100
6
=-
60
6
=-10
,滿足條件.
即x的冪指數(shù)是整數(shù)的項(xiàng)共有4項(xiàng),
故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知(1+2
x
)n
的展開(kāi)式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而等于它后一項(xiàng)的系數(shù)的
5
6

(1)求該展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若(1+x)4=a0+a1x+a2x2+a3x3+a4x4,則a1+a3的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)求(
1
x
-
x
2
)9
的展開(kāi)式中的常數(shù)項(xiàng);
(2)已知x10=a0+a1(x+2)+a2(x+2)2+…a10(x+2)10,求a1+a2+a3+…a10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(
x
+
1
3x
)24
的展開(kāi)式中,x的冪指數(shù)是整數(shù)的有( 。
A.3項(xiàng)B.4項(xiàng)C.5項(xiàng)D.6項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)任意實(shí)數(shù)x,都有(x-1)4=a0+a1(x-3)+a(x-3)2+a3(x-3)3+a4(x-3)4,則
a1+a3
a3
的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(
32
x-
1
2
)20
的展開(kāi)式中,系數(shù)是有理數(shù)的項(xiàng)的項(xiàng)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2x3-
1
2x
)7
的展開(kāi)式中系數(shù)為有理數(shù)的項(xiàng)的個(gè)數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案