【題目】某高科技企業(yè)生產產品A和產品B需要甲、乙兩種新型材料.生產一件產品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產一件產品B需要甲材料0.5kg,乙材料0.3kg,用3個工時,生產一件產品A的利潤為2100元,生產一件產品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個工時的條件下,生產產品A、產品B的利潤之和的最大值為元.

【答案】216000
【解析】解:設A、B兩種產品分別是x件和y件,獲利為z元.
由題意,得 ,z=2100x+900y.
不等式組表示的可行域如圖:由題意可得 ,解得: ,A(60,100),
目標函數(shù)z=2100x+900y.經過A時,直線的截距最大,目標函數(shù)取得最大值:2100×60+900×100=216000元.
故答案為:216000.

設A、B兩種產品分別是x件和y件,根據題干的等量關系建立不等式組以及目標函數(shù),利用線性規(guī)劃作出可行域,通過目標函數(shù)的幾何意義,求出其最大值即可;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3x+λ3x(λ∈R)
(1)當λ=﹣4時,求解方程f(x)=3;
(2)根據λ的不同取值,討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】邊長分別為1, ,2 的三角形的最大角與最小角的和是(
A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù)f(x)在[﹣1,0]上為單調增函數(shù),則(
A.f(sin )<f(cos
B.f(sin1)>f(cos1)
C.f(sin )<f(sin
D.f(sin )>f(tan

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】超市某種綠色食品,過去20個月該食品的月市場需求量(單位: , )即每月銷售的數(shù)據記錄如下:

137 108 114 121 115 135 122 140 128 139

125 140 130 125 105 115 133 124 149 115

對這20個數(shù)據按組距10進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:

(Ⅰ)寫出, 的值.若視分布在各區(qū)間內的頻率為相應的概率,試計算

(Ⅱ)記組月市場需求量數(shù)據的平均數(shù)與方差分別為, , 組月市場需求量數(shù)據的平均數(shù)與方差分別為, ,試分別比較 的大小;(只需寫出結論)

(Ⅲ)為保證該綠色產品的質量,超市規(guī)定該產品僅在每月一日上架銷售,每月最后一日對所有未售出的產品進行下架處理.若超市每售出該綠色食品可獲利潤5元,未售出的食品每虧損3元,并且超市為下一個月采購了該綠色食品,求超市下一個月銷售該綠色食品的利潤的分布列及數(shù)學期望.(以分組的區(qū)間中點值代表該組的各個值,并以月市場需求量落入該區(qū)間的頻率作為月市場需求量取該組區(qū)間中點值的概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (x∈R)時,則下列所有正確命題的序號是
①若任意x∈R,則等式f(﹣x)+f(x)=0恒成立;
②存在m∈(0,1),使得方程|f(x)|=m有兩個不等實數(shù)根;
③任意x1 , x2∈R,若x1≠x2 , 則一定有f(x1)≠f(x2
④存在k∈(1,+∞),使得函數(shù)g(x)=f(x)﹣kx在R上有三個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項等比數(shù)列{bn}滿足:b1=2,b3=8.
(Ⅰ) 求數(shù)列{an},{bn}的通項公式an , bn;
(Ⅱ)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以坐標原點為極點, 軸的非負半軸為極軸的極坐標系中,曲線.

(1)寫出曲線, 的普通方程;

(2)過曲線的右焦點作傾斜角為的直線,該直線與曲線相交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,則異面直線AB1和BC1所成角的余弦值為(
A.0
B.
C.﹣
D.

查看答案和解析>>

同步練習冊答案