【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件樣本,測量這些樣本的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標(biāo)
值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125]

頻數(shù)

6

26

38

22

8

則樣本的該項質(zhì)量指標(biāo)值落在[105,125]上的頻率為

【答案】0.3
【解析】解:由頻數(shù)分布表,得:

樣本的該項質(zhì)量指標(biāo)值落在[105,125]上的頻數(shù)為22+8=30,

∴樣本的該項質(zhì)量指標(biāo)值落在[105,125]上的頻率為p=

所以答案是:0.3.

【考點精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.

(1)求圖中a的值,并估計日需求量的眾數(shù);
(2)某日,經(jīng)銷商購進130件該種產(chǎn)品,根據(jù)近期市場行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤為S元.
(ⅰ)將S表示為x的函數(shù);
(ⅱ)根據(jù)直方圖估計當(dāng)天純利潤S不少于3400元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , 則AC與平面BDC1所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和 ,其中n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) ,求數(shù)列{bn}的前n項和Tn;
(Ⅲ)若對于任意正整數(shù)n,都有 ,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C:f(x)=x3﹣ax+a,若過曲線C外一點A(1,0)引曲線C的兩條切線,它們的傾斜角互補,則a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 且滿足不等式
(1)求不等式 ;
(2)若函數(shù) 在區(qū)間 有最小值為 ,求實數(shù) 值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點B(-1,-3),邊AB上的高CE所在直線的方程為 ,BC邊上中線AD所在的直線方程為
(1)求直線AB的方程;
(2)求點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線x+y﹣1=0與橢圓 相交于A,B兩點,線段AB中點M在直線 上.
(1)求橢圓的離心率;
(2)若橢圓右焦點關(guān)于直線l的對稱點在單位圓x2+y2=1上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二元一次不等式組 所表示的平面區(qū)域為M,若M與圓(x﹣4)2+(y﹣1)2=a(a>0)至少有兩個公共點,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案