【題目】如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.

1)求證:平面平面;

2)求三棱錐外接球的體積.

【答案】1)見(jiàn)解析;(2.

【解析】

1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面

2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.

1)設(shè)中點(diǎn)為,連接、, 因?yàn)?/span>,所以.

,所以

又由已知,,則,所以.

為正三角形,且,所以,

因?yàn)?/span>,所以,

,平面

平面,平面平面;

2)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)的外心,

由(1)知平面,所以三棱錐的外接球的球心.

中,的垂直平分線與的交點(diǎn)即為球心,

的中點(diǎn)為點(diǎn),則.

相似可得

所以.

所以三棱錐外接球的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的一個(gè)焦點(diǎn)為,點(diǎn)C.

1)求橢圓C的方程;

2)過(guò)點(diǎn)且斜率不為0的直線l與橢圓C相交于M,N兩點(diǎn),橢圓長(zhǎng)軸的兩個(gè)端點(diǎn)分別為,,相交于點(diǎn)Q,求證:點(diǎn)Q在某條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);

當(dāng)函數(shù)有兩個(gè)極值點(diǎn),,且時(shí),總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過(guò)點(diǎn)的直線交于兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解高中生作文成績(jī)與課外閱讀量之間的關(guān)系,某研究機(jī)構(gòu)隨機(jī)抽取了100名高中生,根據(jù)問(wèn)卷調(diào)查,得到以下數(shù)據(jù):

作文成績(jī)優(yōu)秀

作文成績(jī)一般

總計(jì)

課外閱讀量較大

35

20

55

課外閱讀量一般

15

30

45

總計(jì)

50

50

100

1)根據(jù)列聯(lián)表,能否有99.5%的把握認(rèn)為課外閱讀量的大小與作文成績(jī)優(yōu)秀有關(guān);

2)若用分層抽樣的方式從課外閱讀量一般的高中生中選取了6名高中生,再?gòu)倪@6名高中生中隨機(jī)選取2名進(jìn)行面談,求面談的高中生中至少有1名作文成績(jī)優(yōu)秀的概率.

附:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1,F2,過(guò)點(diǎn)F1的直線與C交于A,B兩點(diǎn).ABF2的周長(zhǎng)為,且橢圓的離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PA,PBy2分別交于點(diǎn)M,N,當(dāng)|MN|最小時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡(jiǎn)稱蔬菜),購(gòu)入價(jià)為200元/袋,并以300元/袋的價(jià)格售出,若前8小時(shí)內(nèi)所購(gòu)進(jìn)的蔬菜沒(méi)有售完,則批發(fā)商將沒(méi)售完的蔬菜以150元/袋的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把蔬菜低價(jià)處理完,且當(dāng)天不再購(gòu)進(jìn)).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計(jì)了100蔬菜在每天的前8小時(shí)內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購(gòu)入6蔬菜,有4蔬菜在前8小時(shí)內(nèi)分別被4名顧客購(gòu)買,剩下2袋在8小時(shí)后被另2名顧客購(gòu)買.現(xiàn)從這6名顧客中隨機(jī)選2人進(jìn)行服務(wù)回訪,則至少選中1人是以150元/袋的價(jià)格購(gòu)買的概率是多少?

2)以上述樣本數(shù)據(jù)作為決策的依據(jù).

i)若今年蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅(jiān)持每天購(gòu)進(jìn)6蔬菜,試估計(jì)該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值;

ii)若明年該蔬菜批發(fā)商每天購(gòu)進(jìn)蔬菜的袋數(shù)相同,試幫其設(shè)計(jì)明年的蔬菜的進(jìn)貨方案,使其所獲取的平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);

(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過(guò)點(diǎn)且傾斜角為.

1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案